The Saudi Fuhrer of Saudi based islamofascist OIC

Support Klevius' Atheist anti-fascism against islamofascism

This is what BBC's muslim sharia presenter Mishal Husain "forgot" to report. Mishal grew up in the very same theocratic medieval dictatorship which now harbors and rules all muslims world organization OIC and its Human Rights violating sharia. While also spreading islamic hatred over the world through a variety of channels.

Klevius to dumb (or just evil) alt-left "antifa" people who support the worst of Human Rights violating evil:

True anti-fascism in its purest form is laid down in the Universal Human Rights declaration of 1948. Islam (OIC) has in UN decided to abandon the most basic of these rights (the so called negative Human Rights).

Fascism is, according to Google's top hit, "a political philosophy, movement, or regime that exalts nation and often race above the individual and that stands for a centralized autocratic government headed by a dictatorial leader, severe economic and social regimentation*, and forcible suppression of opposition." 23 Aug 2017

So let's face islam with this definition.

A political philosophy, movement, or regime (islam) that exalts nation (Umma) and often race (muslims) above the individual and that stands for a centralized autocratic government (Koran text/Mohammad's example) headed by a dictatorial leader (the caliph - e.g. the Saudi based OIC's Saudi leader), severe economic and social regimentation* (sharia), and forcible suppression of opposition (apostasy ban against muslims wanting to leave islam, and demonizing defenders of Human Rights by calling them "islamophobes").

And islamofascism gets away with it by calling itself a religion and thereby being protected by those very Human Rights it opposes.

* According to Cambridge dictionary, "extreme organization and control of people".

Mrs Theresa May digging a racist/sexist "British" sharia "empire" under the Brexit cliff

Sayeeda Warsi like all sharia muslims is against basic Human Rights

Theresa May is for sharia and EU - but against EU's Human Rights Court which condemns sharia

Klevius is probably now the world's foremost expert on sex segregation (sad isn't it), and islam (the worst cime ever) is the foremost expression of sex segregation. By 'islam' Klevius means the same as true sharia supporting (and therefore against the most basic of Human Rights) muslims.

British muslim jihadists: Samantha Lewthwaite, Mishal Husain and Michael Adebolajo (who murdered Le

Thursday, September 24, 2015

Why are muslims so eagerly throwing rocks against a symbol for non-muslims in Mina outside Mecca (the most intolerant place on Earth)?


Pope today: Most of us were immigrants! Klevius: But not hateful muslims!



 Klevius wrote:

Wednesday, September 26, 2012

Don't fly Qatar to the pagan Kaba idol in hateful Mecca/Saudi Arabia!


Hajj pilgrimage to the pagan idol of islam in the world's most racist, sexist and intolerant city and state may involve some additional evil



















Throwing stones against non-believers.

The word Hajj may be traced to the Swedish 'haj' which now means shark but used to refer to a pole and which originally is an old Finno-Ugric word that later on entered Mideast and semitic languages such as Hebrew and its later derivative Arabic (much like the Finnish 'koti' and Sami 'khode'home are reflected in the Persian Khoda).



Tuesday, September 22, 2015

BBC, which usuallu applauds cooperation with Human Rights violating sharia islamofascists, now frenetically smears UK's planned partnership with China - a country with the least amount (except for Uyghur jihadis) of religious Human Rights violators.


BBC again beat themselves in world leading misinformation, hypocrisy - and covert sharia support


When BBC News (with Saudi raised Mishal Husain and accomplices) today criticized planned British financial cooperation with China while referring to Human Rights (i.e. the "rights" of Saudi backed muslim Uyghur jihadis), they certainly reached a new low point considering their usual low profile about Saudi Arabia and the Saudi based and Saudi steered OIC's extreme lack of Human Rights considerations.

In Saudi Arabia, the "guardian of islam" there are no Human Rights whatsoever - in fact, Human Rights are considered a crime!

- Saud based and steered OIC is the official world organization for all true (especially Sunni/Arab) muslims and it has managed to replace Human Rights with Human Rights violating sharia via their UN declaration. It's extremely disgusting yet no media (especially not BBC) seems interested to report on it.

At least 234,000 UK muslims have a "very favorable" or "somewhat favorable" view on the Islamic State!

Today (2015) approximately 78,000* UK muslims have a "very favorable" view on the Islamic State while some 156,000 have a "somewhat favorable" view. 

* Cautiously estimated on 2.6 million adult UK muslims (2011 census). 



David Cameron: Some muslim communities are ‘quietly condoning’ the extremist ideology that can lead to terrorism.

Klevius: Indeed.

As long as fascism is called good - how could we ever stop it? But Klevius, as a critical European ("islamophobe" if you like) feels extremely embarrassed in front of those true refugees escaping islam and hoping for protection under Western Human Rights. Sorry!














Klevius wrote:

Sunday, June 28, 2015

Where does BBC pick up these twisted minds like Mishal Husain, Edward Stourton etc.?!

Ramadan, the months of jihad means war in islam. "The great Battle of Badr" in 624 was the first "battle" between muslims and non-muslims and it was fought during Ramadan.

Wife of muslim supremacist jihadist murderer in France: “We are normal muslims"

Klevius: Indeed you are! That's the problem, when islam and being muslim is stretched all over the place - yet we all have to listen to "muslim sensitivities" within that very same wide spectrum!


Do the muslim test by asking them if they are against Human Rights. If they are not then they are no real muslims, according to OIC (all muslims world Ummah).

Why hasn't BBC fired their bigots? Are the Brits really ok with paying compulsory fees and taxes to support these senseless lies about islam?!

They happily report about extremely rare occasions of "white supremacist hate crime"  while not even mentioning these word and 'muslim' when triggered by islam (yes, you're right they are all triggered by islam).

Mishal Husain, Samantha Lewthwaite, Michael Adebolajo have sharia islam in common.

Although Edward Stourton most likely tells you that the muslims in the Islamic State are no real muslims, he is acting in a way (sharia islam support) that directly or indirectly contributes to the bloodbath and suffering. Klevius therefore suggests that he should use the word neo-muslims to distinguish between what we could call 'Stourton muslims' and 'Islamic State/Saudi etc muslims' he considers non-muslims. This because Klevius doubts he would stop calling the Saudi "guardians of islam" muslims.

Monday, September 21, 2015

How could anyone (except sharia muslims) even think about voting for a sharia muslim president?! Ignorance? Oh, that...


Ben Carson threatened by sharia muslims


 Ben Carson's campaign pushed back against outrage over his perfectly sound comments regarding islam, saying there was a "huge gulf" between the muslim faith (i.e. unconstitutional and Human Rights violating sharia islam) and "American values." He could also have said that there's a huge gulf between the US Constitution and fascist islam.

Islamofascist CAIR which calls itself a national muslim "civil liberties" group (a funny name for a 'sharia muslim group') has called for Carson to withdraw from the race after he told "Meet the Press" that he would not agree with having a muslim in the White House.
 

  A sharia muslim can never be a constitutional representative of US neither as a president or as other officials. And although not all sharia muslims openly support or are openly militant jihadis - a huge number of them are!

The so called "tiny fraction"

At least 234,000 UK muslims have a "very favorable" or "somewhat favorable" view on the Islamic State!

Today (2015) approximately 78,000* UK muslims have a "very favorable" view on the Islamic State while some 156,000 have a "somewhat favorable" view. 

* Cautiously estimated on 2.6 million adult UK muslims (2011 census). 


David Cameron: Some muslim communities are ‘quietly condoning’ the extremist ideology that can lead to terrorism.

Klevius: Indeed.
Here's what the sharia compliant PC world prefers as a Republican candidate.

Carly Fiorina supports sharia islam - and gets the Saudi sponsored press ticking



Carly Fiorina (after 9/11):  Sharia islam is able to unite the human race under the truest and most harmonious way of life.

Islamofascist Saudi based and steered OIC's Human Rights violating sharia declaration (which via UN guides all muslim countries): Reaffirming the civilizing and historical role of the Islamic Ummah which Allah made as the best community and which gave humanity a universal and well-balanced civilization, in which harmony is established between hereunder and the hereafter, knowledge is combined with faith, and to fulfill the expectations from this community to guide all humanity which is confused because of different and conflicting beliefs and ideologies and to provide solutions for all chronic problems of this materialistic civilization.

Klevius: Carly Fiorina has totally missed the basic fact that the ideology of islam was entirely built of parasitism. Her bottomless ignorance about islam may be summarized as a total lack of understanding of the evil forces that underpinned the origin of islam (and made it "successful") and the evil parasitic slave economy (sharia finance) that kept it ticking until slavery was abolished (the Ottoman slave "empire" slowly sunk into the deepest depravity as a consequence of the lack of slaves).

Klevius' reminder to Carly (and her supporters): The Saudi dictator family is the heart (or "custodian" if you like) of islam today. This family (via Western oil money) is also the cause to most of the victims and refugees sharia islam produces today.

Sharia islam is incompatible with the most basic of Human Rights - as proven by OIC, the world's main muslim organization.

Sharia muslims



Sunday, September 20, 2015

Islam, OIC - and Eurabia

Europe's fascist past reborn via religion

As long as fascism is called good - how could we ever stop it? But Klevius, as a critical European ("islamophobe" if you like) feels extremely embarrassed in front of those true refugees escaping islam and hoping for protection under Western Human Rights. Sorry!













Klevius wrote:

Sunday, June 28, 2015

Where does BBC pick up these twisted minds like Mishal Husain, Edward Stourton etc.?!

Ramadan, the months of jihad means war in islam. "The great Battle of Badr" in 624 was the first "battle" between muslims and non-muslims and it was fought during Ramadan.

Wife of muslim supremacist jihadist murderer in France: “We are normal muslims"

Klevius: Indeed you are! That's the problem, when islam and being muslim is stretched all over the place - yet we all have to listen to "muslim sensitivities" within that very same wide spectrum!


Do the muslim test by asking them if they are against Human Rights. If they are not then they are no real muslims, according to OIC (all muslims world Ummah).

Why hasn't BBC fired their bigots? Are the Brits really ok with paying compulsory fees and taxes to support these senseless lies about islam?!

They happily report about extremely rare occasions of "white supremacist hate crime"  while not even mentioning these word and 'muslim' when triggered by islam (yes, you're right they are all triggered by islam).

Mishal Husain, Samantha Lewthwaite, Michael Adebolajo have sharia islam in common.

Although Edward Stourton most likely tells you that the muslims in the Islamic State are no real muslims, he is acting in a way (sharia islam support) that directly or indirectly contributes to the bloodbath and suffering. Klevius therefore suggests that he should use the word neo-muslims to distinguish between what we could call 'Stourton muslims' and 'Islamic State/Saudi etc muslims' he considers non-muslims. This because Klevius doubts he would stop calling the Saudi "guardians of islam" muslims.

Islamic State caliph: “Islam is the religion of war”.



Klevius: What else could it possibly be? Nothing else explains the history of islam! Islam is at the very opposite pole of Human Rights equality and democracy. And it's stuck there precisely because of its suprenacist racism and sexism. Only (true) muslim males are counted shen islam talk about "fairness", "justice", "tolerance" etc.


Muslims do not want a democracy (other than to destroy democracy), because democracy means that a Kafir is equal to a believer and therefore would complicate for racist muslim supremacism if they want to get civilized.

Muslims need to say that they reject the evil of the assassination Sunna of Mohammed.

What all Muslims have in common is the same Koran, the same prayers, the same Sunna of Mohammed and being a member of one umma  - which today is the Saudi based and Saudi steered OIC and its worldwide sharia declaration which is loosely written to also include Saudi islamofascism (Wahhabism or salafism if you like) which in turn is almost a copy of the Islamic State's sharia.





 Iyad Madani, the Saudi Fuhrer of Saudi based OIC, the worst Human Rights violator

Saturday, September 19, 2015

Who's a muslim - and who's an apostate?

Branded a muslim in the one way road of islam ending with a sharia sign declaring 'apostasy ban'. 

The only way out is committing the worst of crime or lying. And in a Western
cultural context - to pretend you're free to do what you like - much as BBC's muslim presenter Mishal Husain does in the face of islam's victims when she proudly brags about not fasting during Ramadan but instead eating and drinking alcohol, and that she "feels no threat to her way of life".

Samantha Lewthwaite (Brit), Mishal Husain (Paki/Saudi/Brit) and Michael Adebolajo (Brit) have all sharia islam in common - although one of them seems to deny/blink it.
Samantha Lewthwaite, Mishal Husain and Michael Adebolajo have sharia islam in common

Muslims are protected by Human Rights - islam is not!


The only reason such a disgusting and Human Rights violating ideology as sharia islam is possible in a modern society is that its evilness is protected by a misdirected use of Human Rights and the US Constitution. Islam is political and against Human Rights (compare what all muslims main Umma organization, Saudi based and steered OIC, says in its sharia declaration via UN) and can therefore not be protected by Human Rights. Muslims can and should be protected by Human Rights (as everyone else and equally - not more or less), but their Human Rights violating ideology should not.

The sensitive issue of islam's lack of freedom of religion is best exemplified in the desperate cover-up of the background of muslim born* (apostate?!**) Mr. X*** "president"**** Barry Barakeh Hussein Obama Dunham Soetoro (or whatever).


CNN (the Saudi steered truthsayer): A CNN/ORC poll out this week showed 29 percent of Americans believe incorrectly that Obama is Muslim. Of that, 43 percent of Republicans believe that to be true — even though it is false. And that number rises to a whopping 54 percent — a majority — among those who say they are Trump supporters.

Klevius: Rarely do we see journalists telling us in such a definitive language what is "incorrect" and "false".  Sounds like a little child, doesn't it!

Here's an other stubborn and foolish truthsayer (the red pen is Klevius attempt to cover up his stupidity).

It's not a question about Mr X "president's" beliefs - it's about sharia islam that violates the most basic of Universal Human Rights! Obama's apostasy problem reveals the darkest side of islam in a modern civilized world.


The original rant on the pic above tries to avoid the crucial question of Obama being a muslim because his father was a muslim, by confusing it with 'foreign-born', i.e. utilizing some rumors that he entered Hawai from Kenya as a baby and not in his mothers belly.

* Except that the muslim "rumor" is based on the most basic tenet in islam, i.e. that a child to a muslim father is a muslim, there is also 

**** the constitutional problem with a president born by a US citizen who is less than five years into her adulthood.

** If he sees himself as a non-muslim he must have committed apostasy - the worst crime known to islam.

*** "Mr X" means his personal records are kept tightly secret.


This cover-up has been going on since before he was "elected" "president".

And for a whole day Google News top of the top story was that Donald Trump didn't "correct" questioner (who possibly also believed Obama wasn't born in US) who said Obama is a muslim because his father (who, to our knowledge, hadn't committed open apostasy either) was a muslim, as was the grandfather.

This is the most important news you're offered via US Google News - again and again...
 and again...


 and again...
 and seemingly never ending throughout a whole day!


Who is a muslim? The racist/sexist closed one way road to muslimhood.


Obama had two muslim fathers and used to pray in a mosgue during his childhood.



So let's ask an "expert" on islam, General Supervisor, Shaykh Muhammad Saalih al-Munajjid (with clarifying comments by Klevius - the Supervisor of islamic supervisors):

If the child's parents are both Muslims, then he is Muslim too, following his parents, according to the consensus of the Muslims. The same applies if his mother is Muslim, according to the majority of scholars such as Abu Haneefah, al-Shaafa’i and Ahmad. End quote from Majmoo’ al-Fataawa, 10/437.

Klevius (the supervisor of islamic supervisors) comment: What a twisted answer! Muslim mothers have no say at all. If a mother is a muslim then she isn't allowed to have a non-muslim child and strictly speaking not even allowed to marry a non-muslim. And if she is divorced or widowed she isn't allowed to change the status of the child even if she has islamic "custody" (male relatives are the factual custodians in sharia).

It says in al-Mawsoo’ah al-Fiqhiyyah al-Kuwaitiyyah (4/270): The fuqaha’ are unanimously agreed that if the father becomes Muslim and he has young children, then these children are to be regarded as Muslim, following their father. 

The majority (the Hanafis, Shaafa’is and Hanbalis) are of the view that what counts is the Islam of one of the parents, whether it is the father or mother, so the children are to be regarded as Muslims, following the parent, because Islam should prevail and not be prevailed over, because it is the religion of Allah that He is pleased with for His slaves.

Klevius (the supervisor of islamic supervisors) comment:See previous comment and do note the fascist 'islam should prevail' no matter what. And does Klevius have to point out the self-evident totalitarian meaning in this statement. This is as far you can get from civilized behavior.


Secondly: When the Muslim child reaches the age of puberty, he is not required to utter the Shahaadatayn again.

Shaykh al-Islam Ibn Taymiyah said: The Muslims are unanimously agreed that if a child reaches the age of puberty as a Muslim, he is not required to renew the Shahaadatayn. End quote from Dar’ al-Ta’aarud, 4/107.

And he said: The early generation and the imams are unanimously agreed that the first thing to be enjoined upon people is the Shahaadatayn, and they are agreed that if a person did that before reaching puberty, he should not be enjoined to renew that when he reaches puberty. End quote from Dar’ al-Ta’aarud, 4/107

Klevius (the supervisor of islamic supervisors) comment: Gives a lot of space for young muslims while still keeping them tied to this bigoted and hypocritical "religion", doesn't it.

But if after reaching puberty he says or does something that indicates that he is not content with Islam, then he is to be regarded as an apostate and is to be treated as one who has apostatised from the religion of Islam.

Klevius (the supervisor of islamic supervisors) comment: So what about Obama?

Shaykh al-Islam said: In terms of worldly rulings, the child comes under the same rulings as his parents, because he is not independent. When he reaches puberty and speaks words of Islam or disbelief, then he is to be judged on that basis, according to the consensus of the Muslims. If his parents are Jews or Christians, but he becomes Muslim, then he is a Muslim according to Muslim consensus. If they are Muslims and he becomes a kaafir, then he is a kaafir according to Muslim consensus. End quote from al-Fataawa al-Kubra, 1/64

Klevius (the supervisor of islamic supervisors) comment: "Muslim consensus" is what you see in Mideast.

Thirdly: When the child reaches the age of seven, his parents should instruct him to pray and encourage him to do so, because of the report narrated by ‘Abd-Allaah ibn ‘Amr ibn al-‘Aas (may Allah be pleased with him), according to which the Messenger of Allah (blessings and peace of Allah be upon him) said: “Instruct your children to pray when they are seven years old and smack them if they do not do it when they are ten.” Narrated by Abu Dawood (495); classed as saheeh by al-Albaani in Saheeh Abi Dawood (466).


Al-Nawawi said: The imams said: It is obligatory for the fathers and mothers to teach their children about purification, prayer and other laws after the age of seven, and to smack them if they do not do them after the age of ten. End quote from al-Majmoo’, 3/11.



Klevius (the supervisor of islamic supervisors) comment: This is called brainwashing and child abuse in the civilized Western world.

Ibn Qudaamah said: This discipline is prescribed for the child in order to accustom him to prayer, so that he will feel comfortable with it and get used to it, and he will not neglect it when he reaches puberty, but it is not obligatory upon him. Al-Mughni, 1/682


Klevius (the supervisor of islamic supervisors) comment: I see.

If a child does not pray before the age of puberty, that does not put him beyond the pale of Islam, because he is not accountable for doing it and it is not obligatory for him.

Shaykh al-Islam said: Prayer is not obligatory for a child, even if he has reached the age of ten. This is the view of the majority of scholars.

Klevius (the supervisor of islamic supervisors) comment: So Obama, as a child, didn't have to do anything to keep his muslimhood. However, we do know that he did pray when his mother was married with an other muslim, Soetoro, who also became his adoptive father - which fact constitutes an interesting anomaly.

Al-Ikhtiyaaraat al-Fiqhiyyah, 1/32; see also the answer to question number 1994.

Based on this, the child who has a Muslim father and a non-Muslim mother is a Muslim. If he reaches the age of ten and does not pray, he is not a kaafir because of his not praying, because he is not accountable for that until he reaches the age of puberty. If he reaches the age of puberty and persists in not praying, then he is an apostate from Islam because of not praying. 

 Klevius (the supervisor of islamic supervisors) comment: Make your pick! This is why islamofascist countries love OIC's sharia declaration which, unlike Human Rights, gives them clean hands for cherry picking.

Obama interview March 28, 2004


What do you believe?

OBAMA:
I am a Christian. So, I have a deep faith. So I draw from the Christian faith. On the other hand, I lived in Indonesia, the largest Muslim country in the world, between the ages of six and 10. My father was from Kenya, and although he was probably most accurately labeled an agnostic, his father was Muslim.

Have you always been a Christian?

OBAMA:
I was raised more by my mother and my mother was Christian.

I think that, particularly as somebody who’s now in the public realm and is a student of what brings people together and what drives them apart, there’s an enormous amount of damage done around the world in the name of religion and certainty.

Who’s Jesus to you?

(He laughs nervously)

OBAMA:
Right.
Jesus is an historical figure for me, and he’s also a bridge between God and man, in the Christian faith, and one that I think is powerful precisely because he serves as that means of us reaching something higher.

And he’s also a wonderful teacher. I think it’s important for all of us, of whatever faith, to have teachers in the flesh and also teachers in history.

Do you have people in your life that you look to for guidance?

OBAMA:
Well, my pastor is certainly someone who I have an enormous amount of respect for.

Klevius: This racist supremacist pastor was so utterly disgusting that Obama a couple of years later had to stop seeing him if he wanted to continue his campaign.

Friday, September 18, 2015

The ultimate PC question: How could Obama possibly not be a muslim when he was born to a muslim father?!


Historians of tomorrow will undoubtedly choose the denial of Obama's muslimhood/apostasy problem as one of history's biggest deceptions. And although it peaks in Obama because of his "election" as a "president" of US, he as an individual is of no importance. What matters is the PC hold evil Human Rights violating islam has had on our time and the victims and refugees etc that it has caused. 

There can't be a slightest doubt that according to islamic sharia, Obama is a muslim through birth. He hasn't committed open apostasy and his Jesus is the Koranic Jesus - not necessarily the Christian Christ*.

* Dear reader, don't panic, Klevius has never been and never will be a "monotheist", "bitheist" or "tritheist" in any form.


 
 In islam it's the Penis (not even the seed*) that determines muslimhood no matter what the Penis possessor does - unless of course he commits open apostasy, the worst crime known to islam. This is the most basic evil of basic islamic sharia tenets - and in the face of that very 'freedom of religion' under which islamofascism hides.

So why is it THE top story on Google News today that Donald Trump doesn't deny the truth?!



Also note how sharia friendly Fiorina is defended (Trump throws barbs on Fiorina)

The Mr X picture has been hanging on the web since before he was "elected". Today it's more important than ever.

Thursday, September 17, 2015

British muslim terrorist "experts" fear muslim "islamophobia" accusations if checking muslims for muslim jihad "extremism"


"British values" have never been based on islamic sharia. So why shouldn't British muslims openly abandon sharia where it violates the most basic of anti-fascist Human Rights?!


 Klevius: The crucial dividing line between muslim "extremism" and non-extremist muslims is Human Rights violating sharia.

Problem being these "experts" don't want to admit it. Yet sharia islam's evil apostasy ban offers the perfect tool for asking muslims whether they share British values based on the most basic of Human Rights instead of Human Rights violating sharia. Such a declaration makes every muslim an apostate in sharia islam but immediately compatible with "British values".



British MI5 boss Andrew Parker: A "tiny twisted minority" with a "twisted belief" their own country is the enemy of muslims, constitutes a "serious societal threat".

Klevius: Do muslims who share the extremist values of Human Rights violating sharia islam, belong to this "tiny twisted minority" with a "twisted belief"? True muslims belong first and foremost to the Saudi based and Saudi steered muslim world Umma nation, OIC - not Britain.

Here's their islamofascist Saudi sharia Caliph Iyad Madani.

Calling oneself a true muslim automatically connects to sharia islam, the very opposite to Human Rights - e.g. as stated by all the world's muslims' Saudi based and UN sanctioned sharia organization OIC (Organization of Islamic Cooperation) and its islamofascist Saudi Fuhrer Iyad Madani. A consequence of this is that a sharia supporting muslim's vote is undemocratic. OIC's 57 member state voting bloc in UN who supported Human Rights violating sharia as a guidance for muslim legislation all over the world was therefore also undemocratic.


Andrew Parker, MI5: ‘They are a tiny fraction of the population. But the continuing fact that some people born in the UK, with all the opportunities and freedoms that modern Britain offers, can nonetheless make those sorts of warped choices presents a serious societal and security challenge.’

The "tiny fraction"

At least 234,000 UK muslims have a "very favorable" or "somewhat favorable" view on the Islamic State!

Today (2015) approximately 78,000* UK muslims have a "very favorable" view on the Islamic State while some 156,000 have a "somewhat favorable" view. 

* Cautiously estimated on 2.6 million adult UK muslims (2011 census). 


David Cameron: Some muslim communities are ‘quietly condoning’ the extremist ideology that can lead to terrorism.

Klevius: Indeed.



Samantha Lewthwaite, Mishal Husain (raised in Saudi Arabia) and Michael Adebolajo have all Sunni sharia islam in common.


The new British counter-extremism bill, 


which is due to be published later this year, is aimed at “suppressing extremist activity”. It will include proposals for banning orders to outlaw extremist organisations, extremist disruption orders to restrict the activities of individuals, and closure orders to shut down premises used by extremists.

Cameron and the home secretary, Theresa May, have defined extremism as as “vocal or active opposition to fundamental British values”. It covers a range of activity not caught by the current law as terrorism, incitement to violence, stirring up hatred or abuse.


Klevius: What historians call anti-fascism in the 1930s is today called "islamophobia" when it criticizes islamofascism. Why? Or should historians call 1930s anti-fascism "naziphobia"?!

David Andersson, QC:  “If the wrong decisions are taken, the new law risks provoking a backlash in affected communities, hardening perceptions of an illiberal or Islamophobic approach, alienating those whose integration into British society is already fragile, and playing into the hands of those who, by peddling a grievance agenda, seek to drive people further towards extremism and terrorism.”

“The benefits claimed for the new law – assuming that they can be clearly identified – will have to be weighed with the utmost care against the potential consequences, in terms of both inhibiting those freedoms and alienating those people.”

Klevius: Isn't the root problem that "those people" are already alienated via sharia islam? Can muslims, who share the extremist values of Human Rights violating sharia islam, also share fundamental British values”? And will so called "islamophobes" - i.e. peaceful defenders of basic British values based on basic Human Rights in the 1948 anti-fascist Universal Human Rights declaration - be considered "extremists" just because they criticize  muslim sharia that goes against these "British values"?!

Carly Fiorina - a new threat to US and Human Rights!


 Carly Fiorina supports sharia islam - and gets the Saudi sponsored press ticking



Carly Fiorina (after 9/11):  Sharia islam is able to unite the human race under the truest and most harmonious way of life.

Islamofascist Saudi based and steered OIC's Human Rights violating sharia declaration (which via UN guides all muslim countries): Reaffirming the civilizing and historical role of the Islamic Ummah which Allah made as the best community and which gave humanity a universal and well-balanced civilization, in which harmony is established between hereunder and the hereafter, knowledge is combined with faith, and to fulfill the expectations from this community to guide all humanity which is confused because of different and conflicting beliefs and ideologies and to provide solutions for all chronic problems of this materialistic civilization.

Klevius: Carly Fiorina has totally missed the basic fact that the ideology of islam was entirely built of parasitism. Her bottomless ignorance about islam may be summarized as a total lack of understanding of the evil forces that underpinned the origin of islam (and made it "successful") and the evil parasitic slave economy (sharia finance) that kept it ticking until slavery was abolished (the Ottoman slave "empire" slowly sunk into the deepest depravity as a consequence of the lack of slaves).

Klevius' reminder to Carly (and her supporters): The Saudi dictator family is the heart (or "custodian" if you like) of islam today. This family (via Western oil money) is also the cause to most of the victims and refugees sharia islam produces today.

Sharia islam is incompatible with the most basic of Human Rights - as proven by OIC, the world's main muslim organization.








Monday, September 14, 2015

"Western" anthropologists and President Bush demonized by crypto-racist Africans


Although the so called Homo naledi find in South-Africa is impossible to evaluate - due to complete lack of dating, context etc. - it's already presented as both "important" and dismissed as "Western pseudoscience".


Two years ago, several skeletons belonging to an unknown species of early human lineage were discovered in the Rising Star Cave near Johannesburg, South Africa. Now, anthropologist Lee Berger and his team have presented their findings.

Please see the scientific description furthest down on this post.












Dr. (!) Mathole Motshekga: Science should be spiritual - not Western pseudoscience about evolution.


The presentation of the discovery of Homo naledi in South-Africa wasn't well received by all.

As a lawyer Mathole Motshekga obviously lacks training in science*. However, that shouldn't spare him from criticism for his crypto-racist rant against the "Western world".

* In Demand for Resources (1992:43) Klevius wrote that the only truly all-scientific discipline is jurisprudence, where axiomatic true statements (the law) are checked against reality. In other words, the discipline is science. However, that gives no bearing in disciplines lacking pre-made answers. 

Homo nadeli is ‘pseudo science’, according to Motshekga.


Mathole Serofo Motshekga is a South African politician and lawyer who is a member of South Africa's Parliament. Motshekga holds a leadership position within the African National Congress as parliamentary chief whip. He was also the second Premier of Gauteng province. Outside of politics, he is a lecturer in the department of law at the University of South Africa.

Homo Naledi critisism and science denialism

On Friday 11th September 2015, the day after the announcements of the newly discovered hominin species, Homo naledi, during an interview conducted by eNCA Motshekga espoused a scientific denialist view by making largely incoherent statements criticizing the findings as pseudoscientific and as an attempt by the western world to promote the idea of Africans as subhumans:

"I have no objection to scientists conducting research into the past, but when I follow these findings historically, they seem to be calculated to affirm what apartheid and colonialists did to say that we are subhumans who developed from the animal kingdom and therefore gave us the status as subhuman beings to justify slavery, colonialism, oppression and exploitation."

He continued to claim that "...humanity preexisted the universe itself, so the humanity cannot be the product of the animal kingdom which emanated much later. So this thing is inconsistent with reality, is inconsistent with the available African evidence which is being suppressed by the west to support their story that we are subhuman, and that we developed from the animal kingdom. And that's why even today no African is respected anywhere in the world, because of this type of theories which have no scientific basis."

He allegedly based his views on 36 000 year old African literature: "I have access to primal African information that you have never seen." (According to the wikipedia pages on the history of writing and proto-writing the generally accepted consensus is that the oldest writing systems date back to 3200BC, while proto-writing systems date back to 8000BC)

Motshekga elaborated generally on his view of science and evolution by stating: "Science is first and foremost a spiritual thing. For instance if you want to talk about evolution, you must start with the law of squares, which says the mind squared plus the soul squared plus the body squared is equal to this."


President Thabo Mbeki says Western HIV/AIDS aid is 'poison' while allowing quack doctors play with the lives of some 400,000 South-Africans



July 10, 2003 PRETORIA, South Africa, July 9— President Bush today brought the promise of more money for fighting AIDS to South Africa, which has been slow to attack the disease, and he pressed President Thabo Mbeki to deal with the epidemic more effectively.

On the second day of his five-day trip to Africa, Mr. Bush urged the South African leader, who has expressed doubt about the link between HIV and AIDS and raised questions about the effectiveness of the drug treatment that has become standard, to come up with a plan that includes both the drug regimen and prevention efforts.

AIDS was one of two issues in which the two leaders stepped gingerly around each other during a morning of meetings here. The other was the future of Zimbabwe, which is becoming unstable under President Robert Mugabe.

South Africa has 4.7 million people with H.I.V., one of the largest infected populations in the world, but Mr. Mbeki's government has not yet made life-prolonging antiretroviral drugs widely available. Advocacy groups have long demanded that Mr. Mbeki drop what they consider to be his incomprehensible reluctance to deal aggressively with the problem.

White House officials played down the differences between Mr. Bush and Mr. Mbeki on AIDS. But they made clear that the United States would use the leverage of its offer to include South Africa in the first round of countries to benefit from the $15 billion AIDS-fighting package Mr. Bush proposed in January to prod Mr. Mbeki to move faster to bring all available weapons to bear.

''We need a common-sense strategy to make sure that the money is well spent,'' Mr. Bush said at a news conference with Mr. Mbeki. ''And the definition of well spent means lives are saved, which means good treatment programs, good prevention programs, good programs to develop health infrastructures in remote parts of different countries so that we can actually get antiretroviral drugs to those who need help.''


Homo naledi description



    Average height 1.5 m, weight 45 kg.

    Skull: Primitive, similar to Homo habilis. Between 466 and 560 cc, in comparison to H. habilis 510 to 700 cc, H. erectus 550 to 1100 cc, H. floresiensis 426 cc.

    Dentition: Many teeth representing many ages from young to old individuals. They look primitive in the increasing size towards the back of the tooth row, but they look modern in their small size and they are simplified, set in lightly built jawbones.

    Post cranial: The wrist, hands, legs and feet are similar to those in neandertals and modern humans. The hands have curved fingerbones, suggestive of climbing behavior. The legs were made for long distance walking. The feet reflect effective walking. The body has similarities to the Dmanisi’s Homo erectus.



H. naledi lacks the reduced cranial height of Homo floresiensis, and displays a marked angular torus and parasagittal keeling between bregma and lambda that is absent in the latter species. H. naledi further has a flat and squared nasoalveolar clivus, unlike the pronounced maxillary canine juga and prominent pillars of H. floresiensis. The mandible of H. floresiensis shows a posteriorly inclined post incisive planum with superior and inferior transverse tori, differing from the steeply inclined posterior face of the H. naledi mandibular symphysis, which lacks both a post incisive planum or a superior transverse torus. Dentally, H. naledi is distinguishable from H. floresiensis by the mesiodistal elongation and extensive talonid of the mandibular P4, and the lack of Tomes' root on the mandibular premolars. The molar size gradient of H. naledi follows the M1 < M2 < M3 pattern, unlike the M3 < M2 < M1 pattern in H. floresiensis, and the mandibular molars are relatively mesiodistally long and buccolingually narrow compared to those of H. floresiensis.

H1 is distinguished from H. habilis in having a deep proximal palmar fossa with a well-developed ridge distally for the insertion of the flexor pollicis longus muscle on the first distal phalanx, and a more proximodistally oriented trapezium-second metacarpal joint. It also differs from both H. habilis and H. floresiensis by having a relatively large trapezium-scaphoid joint that extends onto the scaphoid tubercle, and from H. floresiensis in having a boot-shaped trapezoid with an expanded palmar surface, and a relatively large and more palmarly-positioned capitate-trapezoid joint (Tocheri et al., 2005, 2007; Orr et al., 2013).

The tibia of H. naledi differs from those of all other known hominins in its possession of a distinct tubercle for the pes anserinus tendon. The tibia differs from other hominins except H. habilis, H. floresiensis, and (variably) H. sapiens in its possession of a rounded anterior border.
Foot (F1)

The H. naledi foot can be distinguished from the foot of H. habilis by the presence of a flatter, non-sloping trochlea with equally elevated medial and lateral margins, a narrower Mt1 base, greater proximolateral to distomedial orientation of the lateral metatarsals, and a metatarsal robusticity ratio of 1 > 5 > 4 > 3 > 2. Pedal morphology in H. rudolfensis is currently unknown, and that of H. erectus is too poorly known to allow for comparison. The H. naledi foot can be distinguished from the foot of H. floresiensis by a longer hallux and shorter second through fifth metacarpals relative to hindfoot length, and higher torsion of the talar head and neck.

Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.

The endocranial volume of all H. naledi specimens is clearly small compared to most known examples of Homo. We combined information from the most complete cranial vault specimens to arrive at an estimate of endocranial volume for both larger (presumably male) and smaller (presumably female) individuals (larger composite depicted in Figure 11). The resulting estimates of approximately 560cc and 465cc, respectively, overlap entirely with the range of endocranial volumes known for australopiths. Within the genus Homo, only the smallest specimens of H. habilis, one single H. erectus specimen, and H. floresiensis overlap with these values.

Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.

The endocranial volume of all H. naledi specimens is clearly small compared to most known examples of Homo. We combined information from the most complete cranial vault specimens to arrive at an estimate of endocranial volume for both larger (presumably male) and smaller (presumably female) individuals (larger composite depicted in Figure 11). The resulting estimates of approximately 560cc and 465cc, respectively, overlap entirely with the range of endocranial volumes known for australopiths. Within the genus Homo, only the smallest specimens of H. habilis, one single H. erectus specimen, and H. floresiensis overlap with these values.

Like the skull, the dentition of H. naledi compares most favorably to early Homo samples. Yet compared to samples of H. habilis, H. rudolfensis, and H. erectus, the teeth of H. naledi are comparatively quite small, similar in dimensions to much later samples of Homo. With both small post-canine teeth and a small endocranial volume, H. naledi joins Au. sediba and H. floresiensis in an area distinct from the general hominin relation of smaller post-canine teeth in species with larger brains (Figure 12).

Specimens from the latest Lower Pleistocene and MP of Europe and Africa that cannot be attributed to H. erectus were included in our comparisons. These include fossils that have been attributed to H. heidelbergensis, H. rhodesiensis, ‘archaic H. sapiens’, or ‘evolved H. erectus’ by a variety of other authors. Specimens attributed to MP Homo include materials from Eliye Springs, Arago, Atapuerca Sima de los Huesos, Bodo, Broken Hill, Cave of Hearths, Ceprano, Dali, Elandsfontein, Jinniushan, Kapthurin, Mauer, Narmada, Ndutu, Petralona, Reilingen-Schwetzingen, Solo, Steinheim, Swanscombe. This grouping includes the following specimens: KNM-ES 11693, Arago 2, Arago 13, Arago 21, Atapuerca 1, Atapuerca 2, Atapuerca 4, Atapuerca 5, Atapuerca 6, Cave of Hearths, SAM-PQ-EH1, Kabwe, Mauer, Ndutu, Salé, Petralona, Reilingen-Schwetzingen, Steinheim.
Homo floresiensis








Order Primates LINNAEUS 1758

Suborder Anthropoidea MIVART 1864

Superfamily Hominoidea GRAY 1825

Family Hominidae GRAY 1825

Tribe Hominini GRAY 1825

Genus Homo LINNAEUS 1758

Homo naledi sp. nov. urn:lsid:zoobank.org:pub:00D1E81A-6E08-4A01-BD98-79A2CEAE2411


The collection is morphologically homogeneous in all duplicated elements, except for those anatomical features that normally reflect body size or sex differences in other primate taxa. Therefore, although we refer to the holotype and the paratypes for differential diagnoses; the section describing the overall anatomy encompasses all morphologically informative specimens.
Differential diagnosis

This comprehensive differential diagnosis is based upon cranial, dental and postcranial characters. The hypodigms used for other species are detailed in the ‘Materials and methods’. We examined original specimens for most species, except where indicated in the ‘Materials and methods’; when we relied on other sources for anatomical observations we indicate this. A summary of traits of H. naledi in comparison to other species is presented in Supplementary file 2. Comparative cranial and mandibular measures are presented in Table 1, and comparative dental measures are provided in Table 2.
View this table:

    View popupView inline

Table 1.

Cranial and mandibular measurements for H. naledi, early hominins, and modern humans

DOI: http://dx.doi.org/10.7554/eLife.09560.012
View this table:

    View popupView inline

Table 2.

Dental measures for H. naledi and comparative hominin species

DOI: http://dx.doi.org/10.7554/eLife.09560.013
Cranium, mandible, and dentition (DH1, DH2, DH3, DH4, DH5, U.W. 101-377)

The cranium of H. naledi does not have the well-developed crest patterns that characterize Australopithecus garhi (Asfaw et al., 1999) and species of the genus Paranthropus, nor the derived facial morphology seen in the latter genus. The mandible of H. naledi is notably more gracile than those of Paranthropus. Although maxillary and mandibular incisors and canines of H. naledi overlap in size with those of Paranthropus, the post-canine teeth are notably smaller than those of Paranthropus and Au. garhi, with mandibular molars that are buccolingually narrow.

H. naledi differs from Australopithecus afarensis and Australopithecus africanus in having a pentagonal-shaped cranial vault in posterior view, sagittal keeling, widely spaced temporal lines, an angular torus, a deep and narrow digastric fossa, an external occipital protuberance, an anteriorly positioned root of the zygomatic process of the maxilla, a broad palate, and a small canine jugum lacking anterior pillars. The anterior and lateral vault of H. naledi differs from Au. afarensis and Au. africanus in exhibiting only slight post-orbital constriction, frontal bossing, a well-developed supraorbital torus with a well-defined supratoral sulcus, temporal lines that are positioned on the posterior rather than the superior aspect of the supraorbital torus, a root of the zygomatic process of the temporal that is angled downwards approximately 30° relative to the Frankfort Horizontal (FH) and which begins its lateral expansion above the mandibular fossa rather than the EAM, a mandibular fossa that is positioned medial to the wall of the temporal squame, a small postglenoid process that contacts the tympanic, a coronally oriented petrous, and a small and obliquely oriented EAM. The H. naledi mandible exhibits a more gracile symphysis and corpus, a more vertically inclined symphysis, a slight mandibular incurvation delineating a faint mental trigon, and a steeply inclined posterior face of the mandibular symphysis without a post incisive planum. The incisors of H. naledi overlap in size with some specimens of Au. africanus, though the canines and post-canine dentition are notably smaller, with relatively narrow buccolingual dimensions of the mandibular molars. The maxillary I1 lacks a median lingual ridge and exhibits a broad and uninflated lingual cervical prominence, the lingual mesial and distal marginal ridges do not merge onto the cervical prominence in the maxillary I2, the mandibular canine exhibits only a weak lingual median ridge and a broad and uninflated lingual cervical prominence, and the buccal grooves on the maxillary premolars are only weakly developed. H. naledi exhibits a small and isolated Carabelli's feature in the maxillary molars, unlike the more prominent and extensive Carabelli's feature of Australopithecus. Moreover, the H. naledi mandibular molars possess small, mesiobuccally restricted protostylids that do not intersect the buccal groove, differing from the typically enlarged, centrally positioned protostylids that intersect the buccal groove in Australopithecus.

The cranium of H. naledi differs from Australopithecus sediba (Berger et al., 2010) in exhibiting sagittal keeling, a more pronounced supraorbital torus and supratoral sulcus, a weakly arched supraorbital contour with rounded lateral corners, an angular torus, a well-defined supramastoid crest, a curved superior margin of the temporal squama, a root of the zygomatic process of the temporal that is angled downwards approximately 30° relative to FH, a flattened nasoalveolar clivus, weak canine juga, an anteriorly positioned root of the zygomatic process of the maxilla, and a relatively broad palate that is anteriorly shallow. The H. naledi mandible (DH1) has a mental foramen positioned superiorly on the corpus that opens posteriorly, unlike the mid-corpus height, more laterally opening mental foramen of Au. sediba. The maxillary and mandibular teeth of H. naledi are smaller than those of Au. sediba, with mandibular molars that are buccolingually narrow. The lingual mesial and distal marginal ridges do not merge onto the cervical prominence in the maxillary I2, the paracone of the maxillary P3 is equal in size to the protocone, the protoconid and metaconid of the mandibular molars are equally mesially positioned, and the lingual cusps of the molars are positioned at the occlusobuccal margin while the buccal cusps are positioned slightly lingual to the occlusobuccal margin. Also, Au. sediba shares with other australopiths a protostylid that is centrally located and which intersects the buccal groove of the lower molars, unlike the small and mesiobuccally restricted protostylid that does not intersect the buccal groove in H. naledi.

The cranium of H. naledi differs from Homo habilis in exhibiting sagittal keeling, a weakly arched supraorbital contour, temporal lines that are positioned on the posterior rather than the superior aspect of the supraorbital torus, an angular torus, an occipital torus, only slight post-orbital constriction, a curved superior margin of the temporal squama, a suprameatal spine, a weak crista petrosa, a prominent Eustachian process, a small EAM, weak canine juga, and an anteriorly positioned root of the zygomatic process of the maxilla. Mandibles attributed to H. habilis show a weakly inclined, shelf-like post incisive planum with a variably developed superior transverse torus, unlike the steeply inclined posterior face of the mandibular symphysis of H. naledi, which lacks both a post incisive planum or superior transverse torus. The H. naledi mandible (DH1) has a mental foramen positioned superiorly on the corpus that opens posteriorly, while the mental foramen of H. habilis is at mid-corpus height and opens more laterally. The maxillary and mandibular dentitions of DH1 are smaller than typical for H. habilis. The mandibular P3 of H. naledi is more molarized and lacks the occlusal simplification seen in H. habilis; it has a symmetrical occlusal outline, and multiple roots (two roots: mesiobuccal and distal) not seen in H. habilis. The molars of H. naledi lack crenulation, secondary fissures, and supernumerary cusps that are common to H. habilis. The protoconid and metaconid of the mandibular molars are equally mesially positioned.

The cranium of H. naledi differs from Homo rudolfensis by its smaller cranial capacity, and by exhibiting frontal bossing, a post-bregmatic depression, sagittal keeling, a well-developed supraorbital torus delineated by a distinct supratoral sulcus, temporal lines that are positioned on the posterior rather than the superior aspect of the supraorbital torus, an occipital torus, an external occipital protuberance, only slight post-orbital constriction, a small postglenoid process, a weak crista petrosa, a laterally inflated mastoid process, a canine fossa, incisors that project anteriorly beyond the bi-canine line, and a shallow anterior palate. As in H. habilis, mandibles attributed to H. rudolfensis show a weakly inclined, shelf-like post incisive planum with a variably developed superior transverse torus, unlike the steeply inclined posterior face of the mandibular symphysis of DH1, the latter of which lacks either a post incisive planum or superior transverse torus. The mandibular symphysis and corpus of H. naledi are more gracile than those attributed to H. rudolfensis, and the H. naledi mandible (DH1) has a mental foramen positioned superiorly on the corpus that opens posteriorly, unlike the mid-corpus height, more laterally opening mental foramen of H. rudolfensis. The maxillary and mandibular dentition of H. naledi is smaller than that of most specimens of H. rudolfensis, with only KNM-ER 60000 and KNM-ER 62000 appearing similar in size for some teeth (Leakey et al., 2012). The molars of H. naledi lack crenulation, secondary fissures, or supernumerary cusps common in H. rudolfensis. The buccal grooves of the maxillary premolars are weak in H. naledi, and the protoconid and metaconid of the mandibular molars are equally mesially positioned.

H. naledi lacks the typically distinctive long and low cranial vault of Homo erectus, as well as the metopic keeling that is typically present in the latter species. H. naledi also differs from H. erectus in having a distinct external occipital protuberance in addition to the tuberculum linearum, a laterally inflated mastoid process, a flat and squared nasoalveolar clivus, and an anteriorly shallow palate. The parasagittal keeling that is present between bregma and lambda in H. naledi (DH1 and DH3) is less marked than often occurs in H. erectus, including in small specimens such as KNM-ER 42700 and the Dmanisi cranial sample. Also unlike most specimens of H. erectus, H. naledi has a small vaginal process, a weak crista petrosa, a marked Eustachian process, and a small EAM. The mandible of H. erectus shows a moderately inclined, shelf-like post incisive planum terminating in a variably developed superior transverse torus, differing from the steeply inclined posterior face of the H. naledi mandibular symphysis, which lacks both a post incisive planum or a superior transverse torus. The mental foramen is positioned superiorly and opens posteriorly in DH1, unlike the mid-corpus height, more laterally opening mental foramen of H. erectus. The maxillary and mandibular incisors and canines of H. naledi are smaller than typical of H. erectus. The mandibular P3 of H. naledi is more molarized and lacks the occlusal simplification seen in H. erectus, they reveal a symmetrical occlusal outline, and multiple roots (2R: MB+D) not typically seen in H. erectus. Furthermore, the molars of H. naledi lack crenulation, secondary fissures, or supernumerary cusps common in H. erectus.

H. naledi lacks the reduced cranial height of Homo floresiensis, and displays a marked angular torus and parasagittal keeling between bregma and lambda that is absent in the latter species. H. naledi further has a flat and squared nasoalveolar clivus, unlike the pronounced maxillary canine juga and prominent pillars of H. floresiensis. The mandible of H. floresiensis shows a posteriorly inclined post incisive planum with superior and inferior transverse tori, differing from the steeply inclined posterior face of the H. naledi mandibular symphysis, which lacks both a post incisive planum or a superior transverse torus. Dentally, H. naledi is distinguishable from H. floresiensis by the mesiodistal elongation and extensive talonid of the mandibular P4, and the lack of Tomes' root on the mandibular premolars. The molar size gradient of H. naledi follows the M1 < M2 < M3 pattern, unlike the M3 < M2 < M1 pattern in H. floresiensis, and the mandibular molars are relatively mesiodistally long and buccolingually narrow compared to those of H. floresiensis.

H. naledi differs from Middle Pleistocene (MP) and Late Pleistocene (LP) Homo (here we include specimens sometimes attributed to the putative Early Pleistocene taxon Homo antecessor, and MP Homo heidelbergensis, Homo rhodesiensis, as well as archaic Homo sapiens and Neandertals) in exhibiting a smaller cranial capacity. H. naledi has its maximum cranial width in the supramastoid region, rather than in the parietal region. It has a clearly defined canine fossa (similar to H. antecessor), a shallow anterior palate, and a flat and a squared nasoalveolar clivus. H. naledi lacks the bilaterally arched and vertically thickened supraorbital tori found in MP and LP Homo. H. naledi also differs in exhibiting a root of the zygomatic process of the temporal that is angled downwards approximately 30° relative to FH, a projecting entoglenoid process, a weak vaginal process, a weak crista petrosa, a prominent Eustachian process, a laterally inflated mastoid process, and a small EAM. The H. naledi mandible tends to be more gracile than specimens of MP Homo. The mandibular canine retains a distinct accessory distal cuspulid not seen in MP and LP Homo. Molar cuspal proportions for H. naledi do not show the derived reduction of the entoconid and hypoconid that characterizes MP and LP Homo. The mandibular M3 is not reduced in DH1, thus revealing an increasing molar size gradient that contrasts with reduction of the M3 in MP and LP Homo.

H. naledi differs from H. sapiens in exhibiting small cranial capacity, a well-defined supraorbital torus and supratoral sulcus, a root of the zygomatic process of the temporal that is angled downwards approximately 30° relative to FH, a large and laterally inflated mastoid with well-developed supramastoid crest, an angular torus, a small vaginal process, a weak crista petrosa, a prominent Eustachian process, a small EAM, a flat and squared nasoalveolar clivus, and a more posteriorly positioned incisive foramen. The H. naledi mandible shows a weaker, less well-defined mentum osseum than H. sapiens, as well as a slight inferior transverse torus that is absent in humans. The mental foramen is positioned superiorly in H. naledi, unlike the mid-corpus height mental foramen of H. sapiens. The mandibular canine possesses a distinct accessory distal cuspulid not seen in H. sapiens. Molar cuspal proportions for H. naledi do not show the derived reduction of the entoconid and hypoconid that characterizes H. sapiens. The mandibular M3 is not reduced in H. naledi, thus revealing an increasing molar size gradient that contrasts with reduction of the M3 in H. sapiens.
Hand (H1)

H. naledi possesses a combination of primitive and derived features not seen in the hand of any other hominin. H1 is differentiated from the estimated intrinsic hand proportions of Au. afarensis in having a relatively long thumb ((Mc1 + PP1)/(Mc3 + PP3 + IP3)) (Rolian and Gordon, 2013; Almécija and Alba, 2014). It is further distinguished from Au. afarensis, Au. africanus, and Au. sediba in having a well-developed crest for both the opponens pollicis and first dorsal interosseous muscles, a trapezium-scaphoid joint that extends onto the scaphoid tubercle, a relatively large and more palmarly-positioned capitate-trapezoid joint, and/or a saddle-shaped Mc5-hamate joint. H. naledi also differs from Au. sediba in that it lacks mediolaterally narrow Mc2-5 shafts (Kivell et al., 2011). Manual morphology of Au. garhi is currently unknown.

H1 is distinguished from H. habilis in having a deep proximal palmar fossa with a well-developed ridge distally for the insertion of the flexor pollicis longus muscle on the first distal phalanx, and a more proximodistally oriented trapezium-second metacarpal joint. It also differs from both H. habilis and H. floresiensis by having a relatively large trapezium-scaphoid joint that extends onto the scaphoid tubercle, and from H. floresiensis in having a boot-shaped trapezoid with an expanded palmar surface, and a relatively large and more palmarly-positioned capitate-trapezoid joint (Tocheri et al., 2005, 2007; Orr et al., 2013).

H1 is dissimilar to hand remains attributed to Paranthropus robustus/early Homo from Swartkrans (Susman, 1988; Susman et al., 2001) in having a relatively small Mc1 base and proximal articular facet, a saddle-shaped Mc5-hamate joint, and more curved proximal and intermediate phalanges of ray 2–5.

Manual morphology of H. rudolfensis is currently unknown, and that of H. erectus is largely unknown. Still, H1 differs from a third metacarpal attributed to H. erectus s. l., as well as from Homo neanderthalensis and H. sapiens by lacking a styloid process (Ward et al., 2013).

H1 is further distinguished from H. neanderthalensis and H. sapiens by its relatively small facets for the Mc1 and scaphoid on the trapezium, its low angle between the Mc2 and Mc3 facets on the capitate, and by its long and curved proximal and intermediate phalanges on rays 2–5.

H1 is differentiated from all known hominins in having a Mc1 that combines a mediolaterally narrow proximal end and articular facet with a mediolaterally wide distal shaft and head, a dorsopalmarly flat and strongly asymmetric (with an enlarged palmar-lateral protuberance) Mc1 head, and the combination of an overall later Homo-like carpal morphology combined with proximal and intermediate phalanges that are more curved than most australopiths. H1 also differs from all other known hominins except H. neanderthalensis in having non-pollical distal phalanges with mediolaterally broad apical tufts (relative to length).
Femur (U.W. 101-1391)

The femur of H. naledi differs from those of all other known hominins in its possession of two well-defined, mediolaterally-running pillars in the femoral neck. The pillars run along the superoanterior and inferoposterior margins of the neck and define a distinct sulcus along its superior aspect.
Tibia (U.W. 101-484)

The tibia of H. naledi differs from those of all other known hominins in its possession of a distinct tubercle for the pes anserinus tendon. The tibia differs from other hominins except H. habilis, H. floresiensis, and (variably) H. sapiens in its possession of a rounded anterior border.
Foot (F1)

The foot of H. naledi differs from the pedal remains of Au. afarensis, Au. africanus, and Au. sediba in having a calcaneus with a weakly developed peroneal trochlea. F1 also differs from Au. afarensis in having a higher orientation of the calcaneal sustentaculum tali. F1 can be further distinguished from pedal remains attributed to Au. africanus in having a higher talar head and neck torsion, a narrower Mt1 base, a dorsally expanded Mt1 head, and greater proximolateral to distomedial orientation of the lateral metatarsals. The H. naledi foot can be further differentiated from the foot of Au. sediba in having a proximodistally flatter talar trochlea, a flat subtalar joint, a diagonally oriented retrotrochlear eminence and a plantar position of the lateral plantar process of the calcaneous, and dorsoplantarly flat articular surface for the cuboid on the Mt4 (Zipfel et al., 2011). Pedal remains of Au. garhi are currently unknown, and those of P. robustus are too poorly known to allow for comparison.

The H. naledi foot can be distinguished from the foot of H. habilis by the presence of a flatter, non-sloping trochlea with equally elevated medial and lateral margins, a narrower Mt1 base, greater proximolateral to distomedial orientation of the lateral metatarsals, and a metatarsal robusticity ratio of 1 > 5 > 4 > 3 > 2. Pedal morphology in H. rudolfensis is currently unknown, and that of H. erectus is too poorly known to allow for comparison. The H. naledi foot can be distinguished from the foot of H. floresiensis by a longer hallux and shorter second through fifth metacarpals relative to hindfoot length, and higher torsion of the talar head and neck.

The foot of H. naledi can be distinguished from the foot of H. sapiens only by its flatter lateral and medial malleolar facets on the talus, its low angle of plantar declination of the talar head, its lower orientation of the calcaneal sustentaculum tali, and its gracile calcaneal tuber.
Description

H. naledi exhibits anatomical features shared with Australopithecus, other features shared with Homo, with several features not otherwise known in any hominin species. This anatomical mosaic is reflected in different regions of the skeleton. The morphology of the cranium, mandible, and dentition is mostly consistent with the genus Homo, but the brain size of H. naledi is within the range of Australopithecus. The lower limb is largely Homo-like, and the foot and ankle are particularly human in their configuration, but the pelvis appears to be flared markedly like that of Au. afarensis. The wrists, fingertips, and proportions of the fingers are shared mainly with Homo, but the proximal and intermediate manual phalanges are markedly curved, even to a greater degree than in any Australopithecus. The shoulders are configured largely like those of australopiths. The vertebrae are most similar to Pleistocene members of the genus Homo, whereas the ribcage is wide distally like Au. afarensis.

H. naledi has a range of body mass similar to small-bodied modern human populations, and is similar in estimated stature to both small-bodied humans and the largest known australopiths. We estimated body mass from eight femoral specimens for which subtrochanteric diameters can be measured (‘Materials and methods’), with results ranging between 39.7 kg and 55.8 kg (Table 3). No femur specimen is sufficiently complete to measure femur length accurately, but the U.W. 101-484 tibia preserves nearly its complete length, allowing a tibia length estimate of 325 mm (Figure 10). Estimates for the stature of this individual based on African human population samples range between 144.5 and 147.8 mm. Again, this stature estimate is similar to small-bodied modern human populations. It is within the range estimated for Dmanisi postcranial elements (Lordkipanidze et al., 2007), and slightly smaller than estimated for early Homo femoral specimens KNM-ER 1472 and KNM-ER 1481. Some large australopiths also had long tibiae and presumably comparably tall statures, as evidenced by the KSD-VP 1/1 skeleton from Woranso-Mille (Haile-Selassie et al., 2010).
View this table:

    View popupView inline

Table 3.

Dinaledi body mass estimates from femur specimens preserving subtrochanteric diameters

DOI: http://dx.doi.org/10.7554/eLife.09560.014
Figure 10.
Download figureOpen in new tabDownload powerpointFigure 10. Maximum tibia length in H. naledi and other hominins.

Maximum tibia length for U.W. 101-484, compared to other nearly complete hominin tibia specimens. Australopithecus afarensis represented by A.L. 288-1 and KSD-VP-1/1 (Haile-Selassie et al., 2010); Homo erectus represented by D3901 from Dmanisi and KNM-WT 15000; Homo habilis by OH 35; Homo floresiensis by LB1 and LB8 (Brown et al., 2004; Morwood et al., 2005). Chimpanzee and contemporary European ancestry humans from Cleveland Museum of Natural History (Lee, 2001); Andaman Islanders from Stock (2013). Vertical lines represent sample ranges; bars represent 1 standard deviation.

DOI: http://dx.doi.org/10.7554/eLife.09560.015

The endocranial volume of all H. naledi specimens is clearly small compared to most known examples of Homo. We combined information from the most complete cranial vault specimens to arrive at an estimate of endocranial volume for both larger (presumably male) and smaller (presumably female) individuals (larger composite depicted in Figure 11). The resulting estimates of approximately 560cc and 465cc, respectively, overlap entirely with the range of endocranial volumes known for australopiths. Within the genus Homo, only the smallest specimens of H. habilis, one single H. erectus specimen, and H. floresiensis overlap with these values.
Figure 11.
Download figureOpen in new tabDownload powerpointFigure 11. Virtual reconstruction of the endocranium of the larger composite cranium from DH1 and DH2 overlaid with the ectocranial surfaces.

(A) Lateral view. (B) Superior view. The resulting estimate of endocranial volume is 560cc. Scale bar = 10 cm.

DOI: http://dx.doi.org/10.7554/eLife.09560.016

Despite its small vault size, the cranium of H. naledi is structurally similar to those of early Homo. Frontal bossing is evident, as is a marked degree of parietal bossing. There is no indication of metopic keeling, though there is slight parasagittal keeling between bregma and lambda, and some prelambdoidal flattening. The cranial vault bones are generally thin, becoming somewhat thicker in the occipital region. The supraorbital torus is well developed, though weakly arched, and is bounded posteriorly by a well-developed supratoral sulcus. The lateral corners of the supraorbital torus are rounded and relatively thin. The temporal lines are widely spaced, and there is no indication of a sagittal crest or temporal/nuchal cresting. The temporal crest is positioned on the posterior aspect of the lateral supraorbital torus, rather than on the superior aspect as in australopiths. At the posteroinferior extent of the temporal lines, they curve anteroinferiorly presenting a well-developed angular torus. The crania have a pentagonal outline in posterior view, with the greatest vault breadth located in the supramastoid region. The nuchal region exhibits sexually dimorphic development of nuchal muscle markings and the external occipital protuberance, and there is a clear indication of a tuberculum linearum in addition to the external occipital protuberance. In superior view the vault tapers from posterior to anterior, though post-orbital constriction is slight. The squamosal suture is low and gently curved, and parietal striae are well defined. The lateral margins of the orbits face laterally. A small zygomaticofacial foramen is typically present near the center of the zygomatic bone. The root of the zygomatic process of the maxilla is anteriorly positioned, at the level of the P3 or the P4. There is no indication of a zygomatic prominence, and the zygomatic arches do not flare laterally to any extent. The root of the zygomatic process of the temporal is angled downwards approximately 30° relative to FH. The root of the zygomatic process of the temporal begins to laterally expand above the level of the mandibular fossa, rather than above the level of the EAM as in australopiths. The mandibular fossa is somewhat large, and moderately deep. The articular eminence of the mandibular fossa is saddle-shaped, and oriented posteroinferiorly. Almost the entire mandibular fossa is positioned medial to the temporal squama. The entoglenoid process is elongated and faces primarily laterally. The postglenoid process is small and closely appressed to the tympanic, forming part of the posterior wall of the fossa. The petrotympanic is distinctly coronally oriented. The vaginal process is small but distinct. The crista petrosa is weakly developed and not notably sharpened. There is a strong Eustachian process. The external auditory meatus is small, oval-shaped, and obliquely oriented, and a distinct suprameatal spine is present. The mastoid region is slightly laterally inflated. The mastoid process is triangular in cross-section, with a rounded apex and a mastoid crest. The digastric groove is deep and narrow, alongside a marked juxtamastoid eminence. The canine juga are weakly developed and there is no indication that anterior pillars would have been present. A shallow, ill-defined canine fossa is indicated. The nasoalveolar clivus is flat and square-shaped. The parabolic-shaped palate is broad and anteriorly shallow, becoming deeper posteriorly.

The mandibular dentition of H. naledi is arranged in a parabolic arch. The alveolar and basal margins of the corpus diverge slightly. A single, posteriorly opening mental foramen is positioned slightly above the mid-corpus level, between the position of the P3 and the P4. The mandibular corpus is relatively gracile, with a well-developed lateral prominence whose maximum extent is typically at the M2. A slight supreme lateral torus (of Dart) weakly delineates the extramolar sulcus from the lateral corpus. The superior lateral torus is moderately developed, running anteriorly to the mental foramen where it turns up to reach the P3 jugum. The marginal torus is moderately developed, and defines a moderate intertoral sulcus. The posterior and anterior marginal tubercles are indicated only as slight roughenings of bone. The gracile mandibular symphysis is vertically oriented. A well-developed mental protuberance and weak lateral tubercles are delineated by a slight mandibular incisure, thereby presenting a weak mentum osseum. The post-incisive planum is steeply inclined and not-shelf-like. There is no superior transverse torus, while a weak, basally oriented inferior transverse torus is present. The anterior and posterior subalveolar fossae are continuous and deep, overhung by a well-developed alveolar prominence. The extramolar sulcus is moderately wide. The root of the ramus of the mandible originates high on the corpus at the level of the M2. Strong ectoangular tuberosities are indicated. A large mandibular foramen is present, with a diffusely defined mylohyoid groove.

Like the skull, the dentition of H. naledi compares most favorably to early Homo samples. Yet compared to samples of H. habilis, H. rudolfensis, and H. erectus, the teeth of H. naledi are comparatively quite small, similar in dimensions to much later samples of Homo. With both small post-canine teeth and a small endocranial volume, H. naledi joins Au. sediba and H. floresiensis in an area distinct from the general hominin relation of smaller post-canine teeth in species with larger brains (Figure 12).
Figure 12.
Download figureOpen in new tabDownload powerpointFigure 12. Brain size and tooth size in hominins.

The buccolingual breadth of the first maxillary molar is shown here in comparison to endocranial volume for many hominin species. H. naledi occupies a position with relatively small molar size (comparable to later Homo) and relatively small endocranial volume (comparable to australopiths). The range of variation within the Dinaledi sample is also fairly small, in particular in comparison to the extensive range of variation within the H. erectus sensu lato. Vertical lines represent the range of endocranial volume estimates known for each taxon; each vertical line meets the horizontal line representing M1 BL diameter at the mean for each taxon. Ranges are illustrated here instead of data points because the ranges of endocranial volume in several species are established by specimens that do not preserve first maxillary molars.

DOI: http://dx.doi.org/10.7554/eLife.09560.017

In comparison to H. habilis, H. rudolfensis, and H. erectus, the teeth of H. naledi are not only small, but also markedly simple in crown morphology. Maxillary and mandibular molars lack extensive crenulation, secondary fissures and supernumerary cusps. The M1 has an equal-sized metacone and paracone, and has a slight expression of Carabelli's trait represented by a small cusp or shallow pit. I1 exhibits slight occlusal curvature with trace marginal ridges and variably small tuberculum dentale. I2 exhibits greater occlusal curvature and tuberculum dentale expression but neither upper incisor has double shovelling or interruption groove. The mandibular canines of H. naledi have a small occlusal area, and have a distal marginal cuspule as a topographically distinct expression of the cingular margin. The P3 is double-rooted, fully bicuspid with metaconid and protoconid of approximately equal height and occlusal area separated by a distinct longitudinal groove, has a distally extensive talonid, and an occlusal outline approximately symmetrical with respect to the mesiodistal axis. P4 likewise has a distally extensive talonid and approximately symmetrical occlusal outline (Figure 5). M1 and M2 lack cusp 6 and cusp 7, except for very slight expression in a small fraction of specimens, and have a very faint subvertical depression rather than a distinct or extensive protostylid. Like australopiths and some early Homo specimens, H. naledi has an increasing molar size gradient in the mandibular dentition (M1 < M2 < M3).

The lower limb of H. naledi is defined not only by a unique combination of primitive and derived traits, but also by the presence of unique features in the femur and tibia. Like all other bipedal hominins, H. naledi possesses a valgus knee and varus ankle. The femoral neck is long, anteverted, and anteroposteriorly compressed. Muscle insertions for the M. gluteus maximus are strong and the femur has a well-marked linea aspera with pilaster variably present. The patella is relatively anteroposteriorly thick. The tibia is mediolaterally compressed with a rounded anterior border, a large proximal attachment for the M. tibialis posterior, and a thin medial malleolus. The fibula is gracile with laterally oriented lateral malleolus, a relatively circular neck and a convex surface for the proximal attachment of the M. peroneus longus. Unique features in the lower limb of H. naledi include a depression in the superior aspect of the femoral neck that results in two mediolaterally oriented pillars inferoposteriorly and superoanteriorly, and a strong distal attachment of the pes anserinus on the tibia.

The foot and ankle of H. naledi are largely humanlike (Figure 9). The tibia stands orthogonally upon the talus, which is moderately wedged, with a mediolaterally flat trochlea having medial and lateral margins at even height, a form distinct from the strong keeling seen in OH 8 (H. habilis) and several tali from Koobi Fora. The talar head and neck exhibit strong, humanlike torsion; the horizontal angle is higher than in most humans, similar to that found in australopiths. The calcaneus is only moderately robust, but possesses the plantar declination of the retrotrochlear eminence and plantarly positioned lateral plantar process found in both modern humans and Au. afarensis. The peroneal trochlea is small, unlike that found in australopiths and similar only to that in H. sapiens and Neanderthals. The talonavicular, subtalar joints and calcaneocuboid joints are humanlike in possessing minimal ranges of motion and evidence for a locking, rigid midfoot. The intermediate and lateral cuneiforms are proximodistally elongated. The hallucal tarsometatarsal joint is flat and proximodistally aligned indicating that H. naledi possessed an adducted, non-grasping hallux. The head of the first metatarsal is mediolaterally expanded dorsally, indicative of a humanlike windlass mechanism. The foot possesses humanlike metatarsal lengths, head proportions, and torsion.

The phalanges are moderately curved, slightly more so than in H. sapiens. The only primitive anatomies found in the foot of H. naledi are the talar head and neck declination and sustentaculum tali angles, suggestive of a lower arched foot with a more plantarly positioned and horizontally inclined medial column than typically found in modern humans (Harcourt-Smith et al., 2015).

The axial skeleton presents a combination of derived (mainly aspects of the vertebrae) and seemingly primitive (mainly the ribs) traits. The preserved adult T10 and T11 vertebrae are proportioned similarly to Pleistocene Homo, with transverse process morphology most similar to Neandertals. The neural canals of these vertebrae are large in comparison to the diminutive overall size of the vertebrae, proportionally recalling Dmanisi H. erectus, Neandertals, and modern humans. The 11th rib is straight (uncurved), similar to Au. afarensis, and the shape of the upper rib cage appears narrow, as assessed from first and second rib fragments, suggesting that the thorax was pyramidal in shape. The 12th rib presents a robust shaft cross-section most similar to Neandertals. This combination is not found in other hominins and might reflect allometric scaling at a small trunk size.

The Dinaledi iliac blade is flared and shortened anteroposteriorly, resembling Au. afarensis or Au. africanus. The ischium is short with a narrow tuberoacetabular sulcus, and the ischiopubic and iliopubic rami are thick, resembling Au. sediba and H. erectus. This combination of iliac and ischiopubic features has not been found in other fossil hominins (Figure 13).
Figure 13.
Download figureOpen in new tabDownload powerpointFigure 13. Selected pelvic specimens of H. naledi.

U.W. 101-1100 ilium in (A) lateral view showing a weak iliac pillar relatively near the anterior edge of the ilium, with no cristal tubercle development; (B) anterior view, angled to demonstrate the degree of flare, which is clear in comparison to the subarcuate surface. U.W. 101-723 immature sacrum in (C) anterior view; and (D) superior view. U.W. 101-1112 ischium in (E) lateral view; and (F) anterior view, demonstrating relatively short tuberacetabular diameter. Scale bar = 2 cm.

DOI: http://dx.doi.org/10.7554/eLife.09560.018

The shoulder of H. naledi is configured with the scapula situated high and lateral on the thorax, short clavicles, and little or no torsion of the humerus. The humerus is notably slender for its length, with prominent greater and lesser tubercles bounding a deep bicipital groove, with a small, non-projecting humeral deltoid tuberosity and brachioradialis crest. Distally, the humerus has a wide lateral distodorsal pillar and narrow medial distodorsal pillar, and a medially-displaced olecranon fossa with septal aperture. The Dinaledi radius and ulna diaphyses exhibit little curvature. The radius has a globular radial tuberosity, prominent pronator quadratus crest, and reduced styloid process.

The hand shares many derived features of modern humans and Neandertals in the thumb, wrist, and palm, but has relatively long and markedly curved fingers (Kivell et al., 2015). The thumb is long relative to the length of the other digits, and includes a robust metacarpal with well-developed intrinsic (M. opponens pollicis and M. first dorsal interosseous) muscle attachments (Figure 6). The pollical distal phalanx is large and robust with a well-developed ridge along the distal border of a deep proximal palmar fossa for the attachment of flexor pollicis longus tendon. Ungual spines also project proximopalmarly from a radioulnarly expanded apical tuft with a distinct area for the ungual fossa. The wrist includes a boot-shaped trapezoid with an expanded non-articular palmar surface, an enlarged and palmarly-expanded trapezoid-capitate joint, and a trapezium-scaphoid joint that extends further onto the scaphoid tubercle. Overall, carpal shapes and articular configurations are very similar to those of modern humans and Neandertals, and unlike those of great apes and other extinct hominins. However, the H. naledi wrist lacks a third metacarpal styloid process, has a more radioulnarly oriented capitate-Mc2 joint, and has a relatively small trapezium-Mc1 joint compared to humans and Neandertals. Moreover, the phalanges are long (relative to the palm) and more curved than most australopiths.
Discussion

The overall morphology of H. naledi places it within the genus Homo rather than Australopithecus or other early hominin genera. The shared derived features that connect H. naledi with other members of Homo occupy most regions of the H. naledi skeleton and represent distinct functional systems, including locomotion, manipulation, and mastication. Locomotor traits shared with Homo include the absolutely long lower limb, with well-marked linea aspera, strong M. gluteus maximus insertions, gracile fibula and generally humanlike ankle and foot. These aspects of the lower limb suggest enhanced locomotor performance for a striding gait. The H. naledi hand shares aspects of Homo morphology in the wrist, thumb and palm, pointing to enhanced object manipulation ability relative to australopiths, including Au. sediba (Kivell et al., 2011; Kivell et al., 2015). H. naledi lacks the powerful mastication that typifies Australopithecus and Paranthropus, with generally small teeth across the dentition, gracile mandibular corpus and symphysis, laterally-positioned temporal lines, slight postorbital constriction and non-flaring zygomatic arches. The upper limb, shoulder and ribcage have a more primitive morphological pattern, but do not preclude affiliating H. naledi with Homo, particularly considering that postcranial remains of H. habilis appear to reflect an australopith-like body plan (Johanson et al., 1986). Locomotor, manipulatory, and masticatory systems have both historical and current importance in defining Homo (Wood and Collard, 1999; Holliday, 2012; Antón et al., 2014), and H. naledi fits within our genus in these respects.

The structural configuration of the H. naledi cranium, beyond the functional aspects of mastication, is likewise shared with Homo. As in many specimens of H. erectus and H. habilis, the H. naledi vault includes a well-developed and moderately arched supraorbital torus, marked from the frontal squama by a continuous supratoral sulcus, frontal bossing. Further, as in many H. erectus crania, H. naledi exhibits a marked angular torus and occipital torus. The H. naledi face includes a flat and squared nasoalveolar clivus, comparable to H. rudolfensis (Leakey et al., 2012), and weak canine fossae. While its anatomy places it unambiguously within Homo, the H. naledi cranium and dentition lack many derived features shared by MP and LP Homo and H. sapiens. The australopith-like features of the postcranium, including the ribcage, shoulder, proximal femur, and relatively long, curved fingers, also depart sharply from the morphology present in MP humans and H. sapiens. The similarities of H. naledi to earlier members of Homo, including H. habilis, H. rudolfensis, and H. erectus, suggest that this species may be rooted within the initial origin and diversification of our genus.

The fossil record of early Homo and Homo-like australopiths has rapidly increased during the last 15 years, and this accumulating evidence has changed our perspective on the rise of our genus. Many skeletal and behavioral features observed to separate later Homo from earlier hominins were formerly argued to have arisen as a single adaptive package, including increased brain size, tool manipulation, increased body size, smaller dentition, and greater commitment to terrestrial long-distance walking or running (Wood and Collard, 1999; Hawks et al., 2000). But we now recognize that such features appeared in different combinations in different fossil samples (Antón et al., 2014). The Dmanisi postcranial sample (Lordkipanidze et al., 2007) and additional cranial remains of H. erectus from Dmanisi (Gabunia et al., 2000; Vekua et al., 2002; Lordkipanidze et al., 2013) and East Africa (Spoor et al., 2007; Leakey et al., 2012), demonstrate that larger brain size and body size did not arise synchronously with improved locomotor efficiency and adaptations to long-distance walking or running in H. erectus (Holliday, 2012; Antón et al., 2014). Further, the discovery of Au. sediba showed that a mosaic of Homo-like hand, pelvis and aspects of craniodental morphology can occur within a species with primitive body size, limb proportions, lower limb and foot morphology, thorax shape, vertebral morphology, and brain size (Berger et al., 2010; Carlson et al., 2011; Kivell et al., 2011; Churchill et al., 2013; DeSilva et al., 2013; Schmid et al., 2013). H. naledi presents yet a different combination of traits. This species combines a humanlike body size and stature with an australopith-sized brain; features of the shoulder and hand apparently well-suited for climbing with humanlike hand and wrist adaptations for manipulation; australopith-like hip mechanics with humanlike terrestrial adaptations of the foot and lower limb; small dentition with primitive dental proportions. In light of this evidence from complete skeletal samples, we must abandon the expectation that any small fragment of the anatomy can provide singular insight about the evolutionary relationships of fossil hominins.

A recent phylogenetic analysis of fossil hominins based on craniodental morphology placed Au. sediba at the base of the genus Homo (Dembo et al., 2015), in agreement with earlier analyses of this species (Berger et al., 2010). The cranial and dental affinities identified between Au. sediba and Homo include many features shared by H. naledi. But H. naledi and Au. sediba share different postcranial features with other species of Homo. Resolving the phylogenetic placement of H. naledi will require both postcranial and craniodental evidence to be integrated together. Such integration poses a challenge because of the poor representation of several key species both within and outside of Homo, most notably H. habilis, for which postcranial evidence is slight, and H. rudolfensis for which no associated postcranial remains are known. We propose the testable hypothesis that the common ancestor of H. naledi, H. erectus, and H. sapiens shared humanlike manipulatory capabilities and terrestrial bipedality, with hands and feet like H. naledi, an australopith-like pelvis and the H. erectus-like aspects of cranial morphology that are found in H. naledi. Enlarged brain size was evidently not a necessary prerequisite for the generally human-like aspects of manipulatory, locomotor, and masticatory morphology of H. naledi.

Although it contains an unprecedented wealth of anatomical information, the Dinaledi deposit remains undated (Dirks et al., 2015). Considering that H. naledi is a morphologically primitive species within our genus, an age may help elucidate the ecological circumstances within which Homo arose and diversified. If the fossils prove to be substantially older than 2 million years, H. naledi would be the earliest example of our genus that is more than a single isolated fragment. The sample would illustrate a model for the relation of adaptive features of the cranium, dentition and postcranium during a critical time interval that is underrepresented by fossil evidence of comparable completeness. A date younger than 1 million years ago would demonstrate the coexistence of multiple Homo morphs in Africa, including this small-brained form, into the later periods of human evolution. The persistence of such a species with clear adaptations for manipulation and grip, alongside MP humans or perhaps even alongside modern humans, would challenge many assumptions about the development of the archaeological record in Africa.

The depth of evidence of H. naledi may provide a perspective on the variation to be expected within fossil hominin taxa (Lordkipanidze et al., 2013; Bermúdez de Castro et al., 2014). The entire Dinaledi collection is remarkably homogeneous. There is very little size variation among adult elements within the collection. Eight body mass estimates from the femur (Table 2) have a standard deviation of only 4.3 kilograms, for a body mass coefficient of variation (CV) of only 9%. The CV of body mass within most human populations is substantially higher than this, with an average near 15% (McKellar and Hendry, 2009). Likewise, the size variation of cranial and dental elements is minimal. With 11 mandibular first molars, the CV of buccolingual breadth is only 3.2% and for 13 maxillary first molars the CV of buccolingual breadth is only 2.0% (buccolingual breadth is used because it is not subject to variance from interproximal wear). Not only size, but also anatomical shape and form are homogeneous within the sample. Almost every aspect of the morphology of the dentition, including the distinctive form of the lower premolars, the distal accessory cuspule of the mandibular canines, and the expression of nonmetric features that normally vary in human populations, is uniform in every specimen from the collection. The distinctive aspects of cranial morphology are repeated in every specimen, and even the aspects that normally vary among individuals of different body size or between sexes exhibit only slight variation among the Dinaledi remains. One of the most unique aspects of H. naledi is the morphology of the first metacarpal; the derived aspects of this anatomy are present in every one of seven first metacarpal specimens in the collection (Figure 14). Unlike any other fossil hominin site in Africa, the Dinaledi Chamber seems to preserve a large number of individuals from a single population, one with variation equal to or less than that found within local populations of modern humans.
Figure 14.
Download figureOpen in new tabDownload powerpointFigure 14. First metacarpals of H. naledi.

Seven first metacarpals have been recovered from the Dinaledi Chamber. U.W. 101-1321 is the right first metacarpal of the associated Hand 1 found in articulation. U.W. 101-1282 and U.W. 101-1641 are anatomically similar left and right first metacarpals, which we hypothesize as antimeres, both were recovered from excavation. U.W. 101-007 was collected from the surface of the chamber, and exhibits the same distinctive morphological characteristics as all the first metacarpals in the assemblage. All of these show a marked robusticity of the distal half of the bone, a very narrow, ‘waisted’ appearance to the proximal shaft and proximal articular surface, prominent crests for attachment of M. opponens pollicis and M. first dorsal interosseous, and a prominent ridge running down the palmar aspect of the bone. The heads of these metacarpals are dorsopalmarly flat and strongly asymmetric, with an enlarged palmar-radial protuberance. These distinctive features are present among all the first metacarpals in the Dinaledi collection, and are absent from any other hominin sample. Their derived nature is evident in comparison to apes and other early hominins, here illustrated with a chimpanzee first metacarpal and the MH2 first metacarpal of Australopithecus sediba.

DOI: http://dx.doi.org/10.7554/eLife.09560.004

The Dinaledi collection is the richest assemblage of associated fossil hominins ever discovered in Africa, and aside from the Sima de los Huesos collection and later Neanderthal and modern human samples, it has the most comprehensive representation of skeletal elements across the lifespan, and from multiple individuals, in the hominin fossil record. The abundance of evidence from this assemblage supports our emerging understanding that the genus Homo encompassed a variety of evolutionary experiments (Antón et al., 2014), with diversity now evident for fossil Homo in each of the few intensively explored parts of Africa (Leakey et al., 2012). But as much as it advances our knowledge, H. naledi also highlights our ignorance about ancient Homo across the vast geographic span of the African continent. The tree of Homo-like hominins is far from complete: we have missed key transitional forms and lineages that persisted for hundreds of thousands of years. With an increasing pace of discovery from the field and the laboratory, more light will be thrown on the origin of humans.
Materials and methods
Comparative hominin specimens examined in this study

In the differential diagnosis of H. naledi, we have compared the holotype DH1, paratypes, and other referred material to fossil evidence from previously-identified hominin taxa. Our goal is to provide a diagnosis for H. naledi that is clear in reference to widely recognized hominin hypodigms. Different specialists continue to disagree about the composition and anatomical breadth represented by these hominin taxa and attribution of particular specimens to them (see e.g., Wood and Collard, 1999; Lordkipanidze et al., 2013; Antón et al., 2014 on early Homo taxa). We do not intend to take any position on such disagreements by our selection of comparative samples for H. naledi.

We have been cautious in our attribution of postcranial specimens to hominin taxa, particularly in the African Plio-Pleistocene, where it has been demonstrated multiple hominin taxa coexisted in time, if not in geographical space. Because the purpose of this study is differential diagnosis in reference to known taxa, unattributed specimens are not germane, although in certain cases there are well-accepted attributions to genus for specimens (e.g., Homo sp. or Australopithecus sp.) as cited below. We have included some specimens in comparisons because they are relatively complete, even if they cannot be attributed to a species, because few hominin taxa are represented by evidence across the entire skeleton. For some anatomical characters, parts are preserved only for MP or later hominin samples, so we have included such comparisons to make clear how H. naledi compares in these elements to the (few) known fossil examples.

This study relies upon observations and measurements taken from original fossils by the authors, observations taken from casts, and observations taken from the literature. These observations are in large part standard anatomical practice; where features are specially described in previous studies we have referenced those here. For this study, a cast collection was assembled including the Phillip V. Tobias research collection at the University of the Witwatersrand and loans of cast materials from the University of Wisconsin–Madison, University of Michigan, American Museum of Natural History, New York University, University of Colorado–Denver, University of Delaware, Texas A&M University, and the personal collections of Peter Schmid, Milford Wolpoff and Rob Blumenschine. We extend our gratitude to the curators of fossil collections and the generosity of these institutions in facilitating this research, both in South Africa and throughout the world.

This list of skeletal materials extends the list of craniodental comparative material used in diagnosing Au. sediba, with many of the hypodigms identical to that study (Berger et al., 2010). Where we have had first-hand access to original specimens, we rely upon our own observations; we therefore do not refer readers to other sources for these data.
Australopithecus afarensis

The samples attributed to Au. afarensis from Hadar, Laetoli, the Middle Awash, Woranso-Mille and Dikika were utilized. For this taxon we relied upon published reports (Johanson et al., 1982; Kimbel et al., 2004; Drapeau et al., 2005; Alemseged et al., 2006; Haile-Selassie et al., 2010; Ward et al., 2012), in addition to our own observations on original fossils and casts.
Australopithecus africanus

The samples attributed to Au. africanus from Taung, Sterkfontein and Makapansgat were employed. Original specimens were examined first-hand by the authors.
Australopithecus garhi

The cranium BOU-VP-12/130 from Bouri was included, with data taken from a published report (Asfaw et al., 1999).
Australopithecus sediba

The partial skeletons MH1 and MH2 from Malapa, South Africa were included in this study, based on examination of the original specimens by the authors.
Paranthropus aethiopicus

The cranium KNM-WT 17000 was examined first-hand for this study.
Paranthropus boisei

Samples from the Omo Shungura sequence, East Lake Turkana, Olduvai Gorge and Konso were included in this study. Original specimens from Olduvai Gorge and East Lake Turkana were examined first-hand, while casts and published reports (Tobias, 1967; Suwa et al., 1996, 1997; Domínguez-Rodrigo et al., 2013) were used to study the Omo and Konso materials. Our postcranial considerations of P. boisei are very limited and we did not rely upon the association of KNM-ER 1500 (Grausz et al., 1988) to derive information about the postcranial skeleton of P. boisei.
Paranthropus robustus

The samples from Kromdraai, Swartkrans, Sterkfontein, Drimolen, Gondolin, and Coopers were included in this study. First-hand observations of original specimens from all localities were used with the exception of Drimolen fossils, which were compared using published reports (Keyser, 2000; Keyser et al., 2000).
Homohabilis

Samples from Olduvai Gorge, East Lake Turkana, the Omo Shungura sequence, Hadar, and Sterkfontein were included in this study. Original Olduvai Gorge and East Lake Turkana fossils were examined first-hand, while for the Omo and Hadar materials we relied on our original observations on casts and originals and published reports (Boaz and Howell, 1977; Tobias, 1991; Kimbel et al., 1997). We include the following fossils in the hypodigm of H. habilis: A.L. 666-1, KNM-ER 1478, KNM-ER 1501, KNM-ER 1502, KNM-ER 1805, KNM-ER 1813, KNM-ER 3735, OH 4, OH 6, OH 7, OH 8, OH 13, OH 15, OH 16, OH 21, OH 24, OH 27, OH 31, OH 35, OH 37, OH 39, OH 42, OH 44, OH 45, OH 62, OMO-L894-1, and Stw 53. We recognize that some authors (including some of the authors of this paper) prefer to classify OH 62, Stw 53 and A.L. 666-1 outside of H. habilis, (e.g., as Homo gautengensis which we do not recognize as valid), or even outside the genus Homo; these specimens expand the morphological and temporal variability encompassed within H. habilis.
Homorudolfensis

Samples from Olduvai Gorge, East Lake Turkana, and Lake Malawi were included in this study. The East Lake Turkana fossils available prior to 2010 were examined first-hand, while for the Olduvai and Lake Malawi fossils and KNM-ER 60000, 62000, and 62003 we relied on original observations on fossils and casts as well as published reports (Schrenk et al., 1993; Blumenschine et al., 2003; Leakey et al., 2012). We include the following fossils in the hypodigm of H. rudolfensis: KNM-ER 819, KNM-ER 1470, KNM-ER 1482, KNM-ER 1483, KNM-ER 1590, KNM-ER 1801, KNM-ER 1802, KNM-ER 3732, KNM-ER 3891, KNM-ER 60000, KNM-ER 62000, KNM-ER 62003, OH 65, and UR 501. We do recognize that KNM-ER 60000 and KNM-ER 1802 present some conflicting anatomy that some authors have argued precludes them as conspecific specimens (Leakey et al., 2012); by considering both, we aim to be conservative as they encompass more variation within H. rudolfensis.
Homo erectus

Samples from Buia, Chemeron, Daka, Dmanisi, East and West Lake Turkana, Gona, Hexian, Konso, Mojokerto, Olduvai Gorge, Sangiran, Swartkrans, Trinil, and Zhoukoudian were included in this study. South African material is of special interest in this comparison because of the geographic proximity, and because of the difficulty of clearly identifying Homo specimens within the large fossil sample from Swartkrans. In particular, the following specimens from Swartkrans are considered to represent H. erectus: SK 15, SK 18a, SK 27, SK 43, SK 45, SK 68, SK 847, SK 878, SK 2635, SKW 3114, SKX 257/258, SKX 267/2671, SKX 268, SKX 269, SKX 334, SKX 339, SKX 610, SKX 1756, SKX 2354, SKX 2355, SKX 2356, and SKX 21204. It has been suggested (Grine et al., 1993, 1996) that SK 847 and Stw 53 might represent the same taxon, and that this taxon is a currently undiagnosed species of Homo in South Africa. However, we agree with Clarke (1977; 2008) that SK 847 can be attributed to H. erectus, and that Stw 53 cannot. Because there is no clear indication that more than one species of Homo is represented in the Swartkrans sample, we consider all this material to belong to H. erectus. We considered ‘Homo ergaster’ (and also ‘Homo aff. erectus’ from Wood, 1991) to be synonyms of H. erectus for this study; Turkana Basin specimens that are attributed to H. erectus thus include KNM-ER 730, KNM-ER 820, KNM-ER 992, KNM-ER 1808, KNM-ER 3733, KNM-ER 3883, KNM-ER 42700, KNM-WT 15000. Olduvai specimens include OH 9, OH 12 and OH 28. Original fossil materials from Chemeron, Lake Turkana, Swartkrans, Trinil, and Dmanisi were examined first-hand by the authors, while the remainder were based on casts and published reports (Weidenreich, 1943; Wood, 1991; Antón, 2003; Rightmire et al., 2006; Suwa et al., 2007).

A large number of postcranial specimens have been collected from the Turkana Basin and appear consistent with the anatomical range otherwise found in Homo, and inconsistent with known samples of Australopithecus and Paranthropus from elsewhere. These include KNM-ER 1472, KNM-ER 1481, KNM-ER 3228, KNM-ER 737, and others. We may add other fossils from other sites lacking association with craniodental material, such as the partial BOU-VP 12/1 skeleton and even the Gona pelvis. These specimens attributable to Homo but not necessarily to a particular species did inform our understanding of variability within the genus, but for the most part these specimens do not inform our differential diagnosis of H. naledi relative to particular species. For example, the key element of femoral morphology of H. naledi in contrast to other species is the presence of two well-defined mediolaterally running pillars in the femoral neck; the isolated specimens of early Homo do not contradict this apparent autapomorphy. Likewise, no isolated specimens inform us about the humanlike aspects of foot morphology in H. naledi. In these cases, the lack of associations for this evidence actually is less important than the lack of specimens that replicate the distinctive features of the H. naledi morphology.
Middle Pleistocene Homo

Specimens from the latest Lower Pleistocene and MP of Europe and Africa that cannot be attributed to H. erectus were included in our comparisons. These include fossils that have been attributed to H. heidelbergensis, H. rhodesiensis, ‘archaic H. sapiens’, or ‘evolved H. erectus’ by a variety of other authors. Specimens attributed to MP Homo include materials from Eliye Springs, Arago, Atapuerca Sima de los Huesos, Bodo, Broken Hill, Cave of Hearths, Ceprano, Dali, Elandsfontein, Jinniushan, Kapthurin, Mauer, Narmada, Ndutu, Petralona, Reilingen-Schwetzingen, Solo, Steinheim, Swanscombe. This grouping includes the following specimens: KNM-ES 11693, Arago 2, Arago 13, Arago 21, Atapuerca 1, Atapuerca 2, Atapuerca 4, Atapuerca 5, Atapuerca 6, Cave of Hearths, SAM-PQ-EH1, Kabwe, Mauer, Ndutu, Salé, Petralona, Reilingen-Schwetzingen, Steinheim.
Homo floresiensis

Specimens from Liang Bua, Flores as described by Brown et al., 2004; Morwood et al., 2005, Jungers et al., 2009a, Jungers et al., 2009b, and Falk et al., 2005 were included in this study.
Scanning and virtual reconstruction methods

The calvariae (DH1-4) were scanned using a NextEngine laser surface scanner (NextEngine, Malibu, CA) at the following settings: Macro, 12 divisions with auto-rotation, HD 17k ppi. Depending on the complexity of the surface relief, either two or three complete scanning cycles were completed per specimen, resulting in multiple 360° scans. Each individual scan was trimmed, aligned, and fused (volume merged) in the accompanying ScanStudio HD Pro software. For each specimen, the individual 360° scans were then aligned and merged in GeoMagic Studio 14.0 (Raindrop Geomagic, Research Triangle Park, NC), creating a final three-dimensional model of the specimen. Given the fragmented nature of the calvariae specimens, both the ectocranial and endocranial surfaces were captured in the scans.

DH3 consisted primarily of portions of the right calvaria. However, a small section of the frontal and the parietal crossed the mid–sagittal plane. For this reason, it was possible to mirror image the surface scan to approximate the left calvaria and obtain a more complete visualization of the complete calvaria (Figure 15). The virtual specimen of DH3 was mirrored in GeoMagic Studio, and manually registered (aligned) using common points along the frontal crest and sagittal suture. The registration procedure in GeoMagic Studio is an iterative process that refines the alignment of specimens to minimize spatial differences between corresponding surfaces. In this manner, the program is able to match the position overlapping surfaces, in addition to their angulation and curvature.
Figure 15.
Download figureOpen in new tabDownload powerpointFigure 15. Posterior view of the virtual reconstruction of DH3.

The resultant mirror image is displayed in blue. The antimeres were aligned by the frontal crest and sagittal suture using the Manual Registration function in GeoMagic Studio 14.0.

DOI: http://dx.doi.org/10.7554/eLife.09560.020

The same procedures were used to mirror image and create a virtual reconstruction of DH2 and the occipital portion of DH1 (Figure 16). The occipital and vault portions of DH1 were reconstructed based on the anatomical alignment of the sagittal suture, sagittal sulcus, parietal striae, and the continuation of the temporal lines across both the specimens.
Figure 16.
Download figureOpen in new tabDownload powerpointFigure 16. Virtual reconstruction of (A) DH2 and (B) occipital portion of DH1.

The actual specimen displays its original coloration and the mirror imaged portion is illustrated in blue.

DOI: http://dx.doi.org/10.7554/eLife.09560.021
Virtual reconstruction of composite crania and estimation of cranial capacity

In order to virtually estimate the cranial capacity, composite crania were constructed from the surface scans and mirror imaged scans of the calvariae. Two separate composite crania were created; the relatively smaller-sized calvariae (DH3 and DH4) were combined into one composite, and the larger-sized calvariae (DH1 and DH2) composed the larger composite cranium.

The smaller composite cranium, DH3 was mirrored in GeoMagic Studio 14.0, and merged with the original scan as outlined above. The surface scan of DH4 was uploaded and registered (aligned) to the DH3 model using overlapping temporal features (e.g., the external auditory meatus). No scaling was performed. DH4 was then mirror imaged to complete the occipital contour. The resultant model suggests a general concordance between the specimens in both size and shape with a close alignment of vault surfaces and anatomical features between specimens (Figure 17).
Figure 17.
Download figureOpen in new tabDownload powerpointFigure 17. Postero-lateral view of the virtual reconstruction of a composite cranium from DH3 and DH4.

(A) The surface scan of DH3 was mirror imaged and merged as described in Supplementary Note 8. (B) The scan of DH4 was aligned to the DH3 model. (C) DH4 was then mirror imaged to complete the occipital contour (D).

DOI: http://dx.doi.org/10.7554/eLife.09560.022

For the larger composite cranium, the surface model of DH2 and its mirror image was then uploaded, registered (aligned), and merged with the mirror-imaged model of DH1. No scaling was performed. The congruency between the specimens in the resultant model suggests that DH1 and DH2 are similar in both size and vault shape (Figure 18).
Figure 18.
Download figureOpen in new tabDownload powerpointFigure 18. Virtual reconstruction of a composite cranium from DH1 and DH2.

The surface model of DH2 (blue), consisting of the original scan merged with the mirror image, was then uploaded and aligned with the mirror-imaged DH1 model (pink). Note the similarity in size and shape between DH1 and DH2 observed in the posterior (A) anterior (B) lateral (C) and superior (D) views.

DOI: http://dx.doi.org/10.7554/eLife.09560.023
Virtual reconstruction of cranial capacity

The composite model of DH3 and DH4 was used to estimate the cranial capacity for the smaller morphotype. In GeoMagic Studio 14.0, the endocranial surface of the composite was carefully selected from the ectocranial surface and copied as a new object. In order to obtain a volume calculation the model has to be a closed surface, meaning that all of the holes in the surface model had to be filled. Small holes in the model were filled using the ‘Fill by Curvature’ function. Larger holes were filled in by sections. For example, the cranial base was filled in using a number of transverse sections, so that in the absence of the cranial base the contour of the various cranial fossae and the petrous portions of the temporal could be preserved as best as possible. When appropriate (e.g., around angular portions of the petrous bone), small sections were filled using a flat hole filling function. The new surfaces created by the hole-filling mechanism were carefully monitored and repeated until an acceptable model that appeared to best approximate the missing portions was obtained. The result is a closed model approximation of the endocranium, of which a volume can be calculated by GeoMagic Studio (Figure 19, Figure 20). The volume of the smaller composite cranium (DH3 and DH4) indicates a cranial capacity of approximately 465 cm3.
Figure 19.
Download figureOpen in new tabDownload powerpointFigure 19. Virtual reconstruction of the endocranium of the composite cranium from DH3 and DH4.

(A) Lateral view. (B) Superior view. (C) Inferior view. In all views, anterior is to towards the left.

DOI: http://dx.doi.org/10.7554/eLife.09560.024
Figure 20.
Download figureOpen in new tabDownload powerpointFigure 20. Virtual reconstruction of the endocranium of the composite cranium from DH3 and DH4 overlaid with the ectocranial surfaces.

(A) Lateral view. (B) Superior view.

DOI: http://dx.doi.org/10.7554/eLife.09560.025

In order to determine whether significant errors were being introduced in the manner that the cranial base was filled in the above procedures, the endocranial volume of DH3/DH4 was also virtually calculated using the cranial base of Sts 19 as a model. A 3D model of Sts 19 was mirrored and aligned to the DH3/DH4 model using the external auditory meatus and common points on the internal surface of the petrous portion as a guide (Figure 21). The Sts 19 model was then scaled by 0.97 to obtain an optimal fit between the two models.
Figure 21.
Download figureOpen in new tabDownload powerpointFigure 21. Virtual reconstruction the DH3/DH4 cranial base using a model of Sts 19.

(A) Right lateral view. (B) Left lateral view. (C) Posterior view. (D) Inferior view.

DOI: http://dx.doi.org/10.7554/eLife.09560.026

After the Sts 19 model was merged with the DH3/DH4 model, the endocranial surface was extracted and reconstructed as described above (Figure 22). The resultant endocranial volume using the Sts 19 cranial base was 465.9 cm3. This value is in agreement with the first estimate and suggests that using a model cranial base did not significantly alter the results.
Figure 22.
Download figureOpen in new tabDownload powerpointFigure 22. Virtual reconstruction the DH3/DH4 endocranial volume using a cranial base model of Sts 19.

Right lateral view.

DOI: http://dx.doi.org/10.7554/eLife.09560.027

The larger composite cranium, consisting of DH1 and DH2, lacks most of the frontal region. In order to create a closed endocranial surface for a volume estimate, the frontal region from the smaller composite cranium was scaled by 5%, and then registered (aligned) and merged to the model of the larger composite cranium. As with the smaller composite cranium, the endocranial surface was then selected and converted to a new object, and the remaining holes filled based on the curvature of the surface. The volume of the closed endocranial model was calculated using GeoMagic Studio. The cranial capacity (endocranial volume) of the larger composite model is approximately 560cc.
Body mass estimation methods

Eight femoral fragments from the Dinaledi collection allow a direct measurement of the subtrochanteric anteroposterior and mediolateral diameters (Table 3). We developed two regression equations to estimate body mass from these diameters based on the masses of modern human samples. MCE measured body masses of a sample of 253 modern European individuals, 128 males and 125 females, collected from the Institute for Forensic Medicine in Zurich, Switzerland. Body masses were taken at time of forensic evaluation. This sample yields the following regression equation relating body mass to subtrochanteric diameter, where FSTpr refers to the product of the femoral subtrochanteric mediolateral and anteroposterior breadths:Body Mass=0.060×FSTpr+13.856,SEE=6.78,r=0.50,p=<0 .001.="" br="">
We further examined a broader sample of 276 modern humans taken from a number of populations around the world, with data measured by TWH. The body masses of individuals were estimated from femur head diameter, using the average of results obtained from Grine et al. (1995) and Ruff et al. (1997). The sample includes 115 females, 155 males, and 6 individuals of indeterminate sex.Body Mass=0.046×FSTpr+24.614,SEE=5.82,r=0.82,p<0 .001.="" br="">Stature estimation methods

We collected data from skeletal material representing two African population samples. We use only African populations in this comparison because the ratio of tibia length to femur length, and thereby the proportion of stature constituted by tibia length, varies between human populations both today and prehistorically. Although we do not know this proportion for H. naledi, we adopt the null hypothesis that they likely had tibia/femur proportions similar to other African population samples.

95 male and female Kulubnarti individuals from medieval Nubia are curated at the University of Colorado, Boulder. Data were collected by HMG, including estimates of living stature based on the Fully method (Fully, 1956; Raxter et al., 2006), and these were used to develop a regression equation relating tibia length to stature. The resulting equation is:Stature=0.295×TML+48.589,SEE=3.13,r=0.90,p<0 .001.="" br="">
We (HMG and TWH) collected measurements from 38 African males and 38 females curated within the Dart Collection of the University of the Witwatersrand. Specimens were randomly chosen with no preference for specific African ethnic groups. Cadaveric statures are documented for this collection, the regression equation relating tibia length to stature in this sample is:Stature=0.223×TML+75.350,SEE=6.50,r=0.63,p<0 .001.="" br="">